Categorizing dynamic textures using a bag of dynamical systems

We consider the problem of categorizing video sequences of dynamic textures, i.e., nonrigid dynamical objects such as fire, water, steam, flags, etc. This problem is extremely challenging because the shape and appearance of a dynamic texture continuously change as a function of time. State-of-the-ar...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 35(2013), 2 vom: 21. Feb., Seite 342-53
1. Verfasser: Ravichandran, Avinash (VerfasserIn)
Weitere Verfasser: Chaudhry, Rizwan, Vidal, René
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM223606286
003 DE-627
005 20231224061055.0
007 cr uuu---uuuuu
008 231224s2013 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2012.83  |2 doi 
028 5 2 |a pubmed24n0745.xml 
035 |a (DE-627)NLM223606286 
035 |a (NLM)23257470 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ravichandran, Avinash  |e verfasserin  |4 aut 
245 1 0 |a Categorizing dynamic textures using a bag of dynamical systems 
264 1 |c 2013 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 13.08.2013 
500 |a Date Revised 21.12.2012 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a We consider the problem of categorizing video sequences of dynamic textures, i.e., nonrigid dynamical objects such as fire, water, steam, flags, etc. This problem is extremely challenging because the shape and appearance of a dynamic texture continuously change as a function of time. State-of-the-art dynamic texture categorization methods have been successful at classifying videos taken from the same viewpoint and scale by using a Linear Dynamical System (LDS) to model each video, and using distances or kernels in the space of LDSs to classify the videos. However, these methods perform poorly when the video sequences are taken under a different viewpoint or scale. In this paper, we propose a novel dynamic texture categorization framework that can handle such changes. We model each video sequence with a collection of LDSs, each one describing a small spatiotemporal patch extracted from the video. This Bag-of-Systems (BoS) representation is analogous to the Bag-of-Features (BoF) representation for object recognition, except that we use LDSs as feature descriptors. This choice poses several technical challenges in adopting the traditional BoF approach. Most notably, the space of LDSs is not euclidean; hence, novel methods for clustering LDSs and computing codewords of LDSs need to be developed. We propose a framework that makes use of nonlinear dimensionality reduction and clustering techniques combined with the Martin distance for LDSs to tackle these issues. Our experiments compare the proposed BoS approach to existing dynamic texture categorization methods and show that it can be used for recognizing dynamic textures in challenging scenarios which could not be handled by existing methods 
650 4 |a Journal Article 
700 1 |a Chaudhry, Rizwan  |e verfasserin  |4 aut 
700 1 |a Vidal, René  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 35(2013), 2 vom: 21. Feb., Seite 342-53  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:35  |g year:2013  |g number:2  |g day:21  |g month:02  |g pages:342-53 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2012.83  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 35  |j 2013  |e 2  |b 21  |c 02  |h 342-53