Visually weighted compressive sensing : measurement and reconstruction

Compressive sensing (CS) makes it possible to more naturally create compact representations of data with respect to a desired data rate. Through wavelet decomposition, smooth and piecewise smooth signals can be represented as sparse and compressible coefficients. These coefficients can then be effec...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 22(2013), 4 vom: 01. Apr., Seite 1444-55
1. Verfasser: Lee, Hyungkeuk (VerfasserIn)
Weitere Verfasser: Oh, Heeseok, Lee, Sanghoon, Bovik, Alan Conrad
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:Compressive sensing (CS) makes it possible to more naturally create compact representations of data with respect to a desired data rate. Through wavelet decomposition, smooth and piecewise smooth signals can be represented as sparse and compressible coefficients. These coefficients can then be effectively compressed via the CS. Since a wavelet transform divides image information into layered blockwise wavelet coefficients over spatial and frequency domains, visual improvement can be attained by an appropriate perceptually weighted CS scheme. We introduce such a method in this paper and compare it with the conventional CS. The resulting visual CS model is shown to deliver improved visual reconstructions
Beschreibung:Date Completed 22.07.2013
Date Revised 12.02.2013
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1941-0042
DOI:10.1109/TIP.2012.2231688