View-based discriminative probabilistic modeling for 3D object retrieval and recognition

In view-based 3D object retrieval and recognition, each object is described by multiple views. A central problem is how to estimate the distance between two objects. Most conventional methods integrate the distances of view pairs across two objects as an estimation of their distance. In this paper,...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 22(2013), 4 vom: 01. Apr., Seite 1395-407
1. Verfasser: Wang, Meng (VerfasserIn)
Weitere Verfasser: Gao, Yue, Lu, Ke, Rui, Yong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM223273996
003 DE-627
005 20231224060303.0
007 cr uuu---uuuuu
008 231224s2013 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2012.2231088  |2 doi 
028 5 2 |a pubmed24n0744.xml 
035 |a (DE-627)NLM223273996 
035 |a (NLM)23221821 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Meng  |e verfasserin  |4 aut 
245 1 0 |a View-based discriminative probabilistic modeling for 3D object retrieval and recognition 
264 1 |c 2013 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 22.07.2013 
500 |a Date Revised 08.02.2013 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In view-based 3D object retrieval and recognition, each object is described by multiple views. A central problem is how to estimate the distance between two objects. Most conventional methods integrate the distances of view pairs across two objects as an estimation of their distance. In this paper, we propose a discriminative probabilistic object modeling approach. It builds probabilistic models for each object based on the distribution of its views, and the distance between two objects is defined as the upper bound of the Kullback-Leibler divergence of the corresponding probabilistic models. 3D object retrieval and recognition is accomplished based on the distance measures. We first learn models for each object by the adaptation from a set of global models with a maximum likelihood principle. A further adaption step is then performed to enhance the discriminative ability of the models. We conduct experiments on the ETH 3D object dataset, the National Taiwan University 3D model dataset, and the Princeton Shape Benchmark. We compare our approach with different methods, and experimental results demonstrate the superiority of our approach 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Gao, Yue  |e verfasserin  |4 aut 
700 1 |a Lu, Ke  |e verfasserin  |4 aut 
700 1 |a Rui, Yong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 22(2013), 4 vom: 01. Apr., Seite 1395-407  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:22  |g year:2013  |g number:4  |g day:01  |g month:04  |g pages:1395-407 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2012.2231088  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 22  |j 2013  |e 4  |b 01  |c 04  |h 1395-407