Fast computation of rotation-invariant image features by an approximate radial gradient transform
We present the radial gradient transform (RGT) and a fast approximation, the approximate RGT (ARGT). We analyze the effects of the approximation on gradient quantization and histogramming. The ARGT is incorporated into the rotation-invariant fast feature (RIFF) algorithm. We demonstrate that, using...
Veröffentlicht in: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 22(2013), 8 vom: 01. Aug., Seite 2970-82 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2013
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society |
Schlagworte: | Journal Article |
Zusammenfassung: | We present the radial gradient transform (RGT) and a fast approximation, the approximate RGT (ARGT). We analyze the effects of the approximation on gradient quantization and histogramming. The ARGT is incorporated into the rotation-invariant fast feature (RIFF) algorithm. We demonstrate that, using the ARGT, RIFF extracts features 16× faster than SURF while achieving a similar performance for image matching and retrieval |
---|---|
Beschreibung: | Date Completed 08.01.2014 Date Revised 29.05.2013 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1941-0042 |
DOI: | 10.1109/TIP.2012.2230011 |