Fast computation of rotation-invariant image features by an approximate radial gradient transform

We present the radial gradient transform (RGT) and a fast approximation, the approximate RGT (ARGT). We analyze the effects of the approximation on gradient quantization and histogramming. The ARGT is incorporated into the rotation-invariant fast feature (RIFF) algorithm. We demonstrate that, using...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 22(2013), 8 vom: 01. Aug., Seite 2970-82
1. Verfasser: Takacs, Gabriel (VerfasserIn)
Weitere Verfasser: Chandrasekhar, Vijay, Tsai, Sam S, Chen, David, Grzeszczuk, Radek, Girod, Bernd
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:We present the radial gradient transform (RGT) and a fast approximation, the approximate RGT (ARGT). We analyze the effects of the approximation on gradient quantization and histogramming. The ARGT is incorporated into the rotation-invariant fast feature (RIFF) algorithm. We demonstrate that, using the ARGT, RIFF extracts features 16× faster than SURF while achieving a similar performance for image matching and retrieval
Beschreibung:Date Completed 08.01.2014
Date Revised 29.05.2013
published: Print-Electronic
Citation Status MEDLINE
ISSN:1941-0042
DOI:10.1109/TIP.2012.2230011