Treatment of methyl orange dye wastewater by cooperative electrochemical oxidation in anodic-cathodic compartment

Electrochemical oxidation of methyl orange wastewater was studied using Ti/IrO(2)/RuO(2) anode and a self-made Pd/C O(2)-fed cathode in the divided cell with a terylene diaphragm. The result indicated that the appropriate rate of feeding air improved the methyl orange removal efficiency. The discolo...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Water science and technology : a journal of the International Association on Water Pollution Research. - 1986. - 67(2013), 3 vom: 30., Seite 521-6
1. Verfasser: Pang, L (VerfasserIn)
Weitere Verfasser: Wang, H, Bian, Z Y
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:Water science and technology : a journal of the International Association on Water Pollution Research
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Azo Compounds Coloring Agents Ruthenium Compounds Water Pollutants, Chemical iridium oxide 12030-49-8 Iridium 44448S9773 mehr... methyl orange 6B4TC34456 Titanium D1JT611TNE
Beschreibung
Zusammenfassung:Electrochemical oxidation of methyl orange wastewater was studied using Ti/IrO(2)/RuO(2) anode and a self-made Pd/C O(2)-fed cathode in the divided cell with a terylene diaphragm. The result indicated that the appropriate rate of feeding air improved the methyl orange removal efficiency. The discoloration efficiency of methyl orange in the divided cell increased with increasing current density. The initial pH value had some effect on the discoloration of methyl orange, which became not obvious when the pH ranged from 2 to 10. However, the average removal efficiency of methyl orange wastewater in terms of total organic carbon (TOC) can reach 89.3%. The methyl orange structure had changed in the electrolytic process, and the characteristic absorption peak of methyl orange was about 470 nm. With the extension of electrolysis time, the concentration of methyl orange gradually reduced; wastewater discoloration rate increased gradually. The degradation of methyl orange was assumed to be cooperative oxidation by direct or indirect electrochemical oxidation at the anode and H(2)O(2), ·OH, O(2)(-)· produced by oxygen reduction at the cathode in the divided cell. Therefore, the cooperative electrochemical oxidation of methyl orange wastewater in the anodic-cathodic compartment had better degradation effects
Beschreibung:Date Completed 18.03.2013
Date Revised 25.11.2016
published: Print
Citation Status MEDLINE
ISSN:0273-1223
DOI:10.2166/wst.2012.589