Learning smooth pattern transformation manifolds

Manifold models provide low-dimensional representations that are useful for processing and analyzing data in a transformation-invariant way. In this paper, we study the problem of learning smooth pattern transformation manifolds from image sets that represent observations of geometrically transforme...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 22(2013), 4 vom: 26. Apr., Seite 1311-25
1. Verfasser: Vural, Elif (VerfasserIn)
Weitere Verfasser: Frossard, Pascal
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652 4500
001 NLM223001651
003 DE-627
005 20250214165129.0
007 cr uuu---uuuuu
008 231224s2013 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2012.2227768  |2 doi 
028 5 2 |a pubmed25n0743.xml 
035 |a (DE-627)NLM223001651 
035 |a (NLM)23193457 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Vural, Elif  |e verfasserin  |4 aut 
245 1 0 |a Learning smooth pattern transformation manifolds 
264 1 |c 2013 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 22.07.2013 
500 |a Date Revised 08.02.2013 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Manifold models provide low-dimensional representations that are useful for processing and analyzing data in a transformation-invariant way. In this paper, we study the problem of learning smooth pattern transformation manifolds from image sets that represent observations of geometrically transformed signals. To construct a manifold, we build a representative pattern whose transformations accurately fit various input images. We examine two objectives of the manifold-building problem, namely, approximation and classification. For the approximation problem, we propose a greedy method that constructs a representative pattern by selecting analytic atoms from a continuous dictionary manifold. We present a dc optimization scheme that is applicable to a wide range of transformation and dictionary models, and demonstrate its application to the transformation manifolds generated by the rotation, translation, and anisotropic scaling of a reference pattern. Then, we generalize this approach to a setting with multiple transformation manifolds, where each manifold represents a different class of signals. We present an iterative multiple-manifold-building algorithm such that the classification accuracy is promoted in the learning of the representative patterns. The experimental results suggest that the proposed methods yield high accuracy in the approximation and classification of data compared with some reference methods, while the invariance to geometric transformations is achieved because of the transformation manifold model 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Frossard, Pascal  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 22(2013), 4 vom: 26. Apr., Seite 1311-25  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:22  |g year:2013  |g number:4  |g day:26  |g month:04  |g pages:1311-25 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2012.2227768  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 22  |j 2013  |e 4  |b 26  |c 04  |h 1311-25