Estimation-theoretic approach to delayed decoding of predictively encoded video sequences
Current video coders employ predictive coding with motion compensation to exploit temporal redundancies in the signal. In particular, blocks along a motion trajectory are modeled as an auto-regressive (AR) process, and it is generally assumed that the prediction errors are temporally independent and...
Veröffentlicht in: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 22(2013), 3 vom: 26. März, Seite 1175-85 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2013
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society |
Schlagworte: | Journal Article |
Zusammenfassung: | Current video coders employ predictive coding with motion compensation to exploit temporal redundancies in the signal. In particular, blocks along a motion trajectory are modeled as an auto-regressive (AR) process, and it is generally assumed that the prediction errors are temporally independent and approximate the innovations of this process. Thus, zero-delay encoding and decoding is considered efficient. This paper is premised on the largely ignored fact that these prediction errors are, in fact, temporally dependent due to quantization effects in the prediction loop. It presents an estimation-theoretic delayed decoding scheme, which exploits information from future frames to improve the reconstruction quality of the current frame. In contrast to the standard decoder that reproduces every block instantaneously once the corresponding quantization indices of residues are available, the proposed delayed decoder efficiently combines all accessible (including any future) information in an appropriately derived probability density function, to obtain the optimal delayed reconstruction per transform coefficient. Experiments demonstrate significant gains over the standard decoder. Requisite information about the source AR model is estimated in a spatio-temporally adaptive manner from a bit-stream conforming to the H.264/AVC standard, i.e., no side information needs to be sent to the decoder in order to employ the proposed approach, thereby compatibility with the standard syntax and existing encoders is retained |
---|---|
Beschreibung: | Date Completed 18.07.2013 Date Revised 01.02.2013 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1941-0042 |
DOI: | 10.1109/TIP.2012.2227773 |