Activity recognition using a mixture of vector fields

The analysis of moving objects in image sequences (video) has been one of the major themes in computer vision. In this paper, we focus on video-surveillance tasks; more specifically, we consider pedestrian trajectories and propose modeling them through a small set of motion/vector fields together wi...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 22(2013), 5 vom: 15. Mai, Seite 1712-25
1. Verfasser: Nascimento, Jacinto C (VerfasserIn)
Weitere Verfasser: Figueiredo, Mário A T, Marques, Jorge S
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM222999489
003 DE-627
005 20231224055651.0
007 cr uuu---uuuuu
008 231224s2013 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2012.2226899  |2 doi 
028 5 2 |a pubmed24n0743.xml 
035 |a (DE-627)NLM222999489 
035 |a (NLM)23193235 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Nascimento, Jacinto C  |e verfasserin  |4 aut 
245 1 0 |a Activity recognition using a mixture of vector fields 
264 1 |c 2013 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 09.09.2013 
500 |a Date Revised 20.03.2013 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The analysis of moving objects in image sequences (video) has been one of the major themes in computer vision. In this paper, we focus on video-surveillance tasks; more specifically, we consider pedestrian trajectories and propose modeling them through a small set of motion/vector fields together with a space-varying switching mechanism. Despite the diversity of motion patterns that can occur in a given scene, we show that it is often possible to find a relatively small number of typical behaviors, and model each of these behaviors by a "simple" motion field. We increase the expressiveness of the formulation by allowing the trajectories to switch from one motion field to another, in a space-dependent manner. We present an expectation-maximization algorithm to learn all the parameters of the model, and apply it to trajectory classification tasks. Experiments with both synthetic and real data support the claims about the performance of the proposed approach 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Figueiredo, Mário A T  |e verfasserin  |4 aut 
700 1 |a Marques, Jorge S  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 22(2013), 5 vom: 15. Mai, Seite 1712-25  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:22  |g year:2013  |g number:5  |g day:15  |g month:05  |g pages:1712-25 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2012.2226899  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 22  |j 2013  |e 5  |b 15  |c 05  |h 1712-25