Binary compressed imaging

Compressed sensing can substantially reduce the number of samples required for conventional signal acquisition at the expense of an additional reconstruction procedure. It also provides robust reconstruction when using quantized measurements, including in the one-bit setting. In this paper, our goal...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 22(2013), 3 vom: 15. März, Seite 1042-55
1. Verfasser: Bourquard, Aurélien (VerfasserIn)
Weitere Verfasser: Unser, Michael
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM222999462
003 DE-627
005 20231224055651.0
007 cr uuu---uuuuu
008 231224s2013 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2012.2226900  |2 doi 
028 5 2 |a pubmed24n0743.xml 
035 |a (DE-627)NLM222999462 
035 |a (NLM)23193233 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Bourquard, Aurélien  |e verfasserin  |4 aut 
245 1 0 |a Binary compressed imaging 
264 1 |c 2013 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 18.07.2013 
500 |a Date Revised 30.01.2013 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Compressed sensing can substantially reduce the number of samples required for conventional signal acquisition at the expense of an additional reconstruction procedure. It also provides robust reconstruction when using quantized measurements, including in the one-bit setting. In this paper, our goal is to design a framework for binary compressed sensing that is adapted to images. Accordingly, we propose an acquisition and reconstruction approach that complies with the high dimensionality of image data and that provides reconstructions of satisfactory visual quality. Our forward model describes data acquisition and follows physical principles. It entails a series of random convolutions performed optically followed by sampling and binary thresholding. The binary samples that are obtained can be either measured or ignored according to predefined functions. Based on these measurements, we then express our reconstruction problem as the minimization of a compound convex cost that enforces the consistency of the solution with the available binary data under total-variation regularization. Finally, we derive an efficient reconstruction algorithm relying on convex-optimization principles. We conduct several experiments on standard images and demonstrate the practical interest of our approach 
650 4 |a Journal Article 
700 1 |a Unser, Michael  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 22(2013), 3 vom: 15. März, Seite 1042-55  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:22  |g year:2013  |g number:3  |g day:15  |g month:03  |g pages:1042-55 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2012.2226900  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 22  |j 2013  |e 3  |b 15  |c 03  |h 1042-55