Organoalkoxysilane-grafted silica composites for acidic and basic gas adsorption

With the prevalence of air quality issues in our society, the ability to remove toxic gases from air is a necessity. This work addresses the development of biphasic, nanostructured, organoalkoxysilane-grafted, siliceous materials for use in single pass filters of various types for the removal of aci...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 28(2012), 50 vom: 18. Dez., Seite 17450-6
1. Verfasser: Furtado, Amanda M B (VerfasserIn)
Weitere Verfasser: Barpaga, Dushyant, Mitchell, Lucas A, Wang, Yu, DeCoste, Jared B, Peterson, Gregory W, Levan, M Douglas
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S.
Beschreibung
Zusammenfassung:With the prevalence of air quality issues in our society, the ability to remove toxic gases from air is a necessity. This work addresses the development of biphasic, nanostructured, organoalkoxysilane-grafted, siliceous materials for use in single pass filters of various types for the removal of acidic and basic gases from humid air. Materials exhibit high single pass capacities for sulfur dioxide, a representative acid-forming gas, or ammonia, a representative basic gas. The nanostructured siliceous support provides initial ammonia capacity, and grafted amine and carbonyl groups provide desired functional chemistries for sulfur dioxide and enhanced ammonia capacities. Methacryloxypropyltrimethoxysilane (MAPS)-MCM-41 has the highest ammonia capacity at about 7 mol/kg at 1500 ppmv and 23 °C, and 3-aminopropyltriethoxysilane (APTES)-MCM-41 has the highest sulfur dioxide capacity at 0.85 mol/kg at 500 ppmv and 23 °C. These biphasic materials exhibit high adsorption capacity for two distinct gases and are promising candidates as adsorbents for protection from toxic industrial gases
Beschreibung:Date Completed 23.05.2013
Date Revised 18.12.2012
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/la303203k