Flip-invariant SIFT for copy and object detection

Scale-invariant feature transform (SIFT) feature has been widely accepted as an effective local keypoint descriptor for its invariance to rotation, scale, and lighting changes in images. However, it is also well known that SIFT, which is derived from directionally sensitive gradient fields, is not f...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 22(2013), 3 vom: 03. März, Seite 980-91
1. Verfasser: Zhao, Wan-Lei (VerfasserIn)
Weitere Verfasser: Ngo, Chong-Wah
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM222545577
003 DE-627
005 20231224054530.0
007 cr uuu---uuuuu
008 231224s2013 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2012.2226043  |2 doi 
028 5 2 |a pubmed24n0741.xml 
035 |a (DE-627)NLM222545577 
035 |a (NLM)23144031 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhao, Wan-Lei  |e verfasserin  |4 aut 
245 1 0 |a Flip-invariant SIFT for copy and object detection 
264 1 |c 2013 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 18.07.2013 
500 |a Date Revised 30.01.2013 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Scale-invariant feature transform (SIFT) feature has been widely accepted as an effective local keypoint descriptor for its invariance to rotation, scale, and lighting changes in images. However, it is also well known that SIFT, which is derived from directionally sensitive gradient fields, is not flip invariant. In real-world applications, flip or flip-like transformations are commonly observed in images due to artificial flipping, opposite capturing viewpoint, or symmetric patterns of objects. This paper proposes a new descriptor, named flip-invariant SIFT (or F-SIFT), that preserves the original properties of SIFT while being tolerant to flips. F-SIFT starts by estimating the dominant curl of a local patch and then geometrically normalizes the patch by flipping before the computation of SIFT. We demonstrate the power of F-SIFT on three tasks: large-scale video copy detection, object recognition, and detection. In copy detection, a framework, which smartly indices the flip properties of F-SIFT for rapid filtering and weak geometric checking, is proposed. F-SIFT not only significantly improves the detection accuracy of SIFT, but also leads to a more than 50% savings in computational cost. In object recognition, we demonstrate the superiority of F-SIFT in dealing with flip transformation by comparing it to seven other descriptors. In object detection, we further show the ability of F-SIFT in describing symmetric objects. Consistent improvement across different kinds of keypoint detectors is observed for F-SIFT over the original SIFT 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Ngo, Chong-Wah  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 22(2013), 3 vom: 03. März, Seite 980-91  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:22  |g year:2013  |g number:3  |g day:03  |g month:03  |g pages:980-91 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2012.2226043  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 22  |j 2013  |e 3  |b 03  |c 03  |h 980-91