Fine mapping of foxglove aphid (Aulacorthum solani) resistance gene Raso1 in soybean and its effect on tolerance to Soybean dwarf virus transmitted by foxglove aphid

Soybean dwarf virus (SbDV) causes serious dwarfing, yellowing and sterility in soybean (Glycine max). The soybean cv. Adams is tolerant to SbDV infection in the field and exhibits antibiosis to foxglove aphid (Aulacorthum solani), which transmits SbDV. This antibiosis (termed "aphid resistance&...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Breeding science. - 1998. - 61(2012), 5 vom: 01. Jan., Seite 618-24
1. Verfasser: Ohnishi, Shizen (VerfasserIn)
Weitere Verfasser: Miyake, Noriyuki, Takeuchi, Toru, Kousaka, Fumiko, Hiura, Satoshi, Kanehira, Osamu, Saito, Miki, Sayama, Takashi, Higashi, Ayako, Ishimoto, Masao, Tanaka, Yoshinori, Fujita, Shohei
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:Breeding science
Schlagworte:Journal Article NBS-LRR aphid resistance foxglove aphid soybean soybean dwarf virus
Beschreibung
Zusammenfassung:Soybean dwarf virus (SbDV) causes serious dwarfing, yellowing and sterility in soybean (Glycine max). The soybean cv. Adams is tolerant to SbDV infection in the field and exhibits antibiosis to foxglove aphid (Aulacorthum solani), which transmits SbDV. This antibiosis (termed "aphid resistance") is required for tolerance to SbDV in the field in segregated progenies of Adams. A major quantitative trait locus, Raso1, is reported for foxglove aphid resistance. Our objectives were to fine map Raso1 and to reveal whether Raso1 alone is sufficient to confer both aphid resistance and SbDV tolerance. We introduced Raso1 into cv. Toyomusume by backcrossing and investigated the degree of aphid antibiosis to foxglove aphid and the degree of tolerance to SbDV in the field. All Raso1-introduced backcross lines showed aphid resistance. Interestingly, only one Raso1-introduced backcross line (TM-1386) showed tolerance to SbDV in the field. The results demonstrated Raso1 alone is sufficient to confer aphid resistance but insufficient for SbDV tolerance. Tolerance to SbDV was indicated to require additional gene(s) to Raso1. Additionally, Raso1 was mapped to a 63-kb interval on chromosome 3 of the Williams 82 sequence assembly (Glyma1). This interval includes a nucleotide-binding site-leucine-rich repeat encoding gene and two other genes in the Williams 82 soybean genome sequence
Beschreibung:Date Completed 09.11.2012
Date Revised 21.03.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1344-7610
DOI:10.1270/jsbbs.61.618