Effect of ionic liquid impurities on the synthesis of silver nanoparticles

Imidazolium-based ionic liquids have been widely utilized as versatile solvents for metal nanoparticle synthesis; however, reactions to synthesize silver nanoparticles that are performed identically in different commercially obtained lots of 1-butyl-3-methylimidazolium tetrafluoroborate (BMIM-BF(4))...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 28(2012), 45 vom: 13. Nov., Seite 15987-93
1. Verfasser: Lazarus, Laura L (VerfasserIn)
Weitere Verfasser: Riche, Carson T, Malmstadt, Noah, Brutchey, Richard L
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. 1-butyl-3-methylimidazolium tetrafluoroborate Imidazoles Ionic Liquids Silver 3M4G523W1G
Beschreibung
Zusammenfassung:Imidazolium-based ionic liquids have been widely utilized as versatile solvents for metal nanoparticle synthesis; however, reactions to synthesize silver nanoparticles that are performed identically in different commercially obtained lots of 1-butyl-3-methylimidazolium tetrafluoroborate (BMIM-BF(4)) give divergent results. This suggests that impurities in these nominally identical solvents play an important role in the resulting silver nanoparticle quality. To test the effect that impurities have on the quality of silver nanoparticles synthesized in BMIM-BF(4), silver nanoparticles were synthesized in carefully prepared and purified BMIM-BF(4) and compared against silver nanoparticles that were synthesized in the purified BMIM-BF(4) that had been spiked with trace amounts of water, chloride, and 1-methylimidazole. It was clearly demonstrated that trace amounts of these common ionic liquid impurities cause significant deviation in size and shape (creating polydisperse and irregularly shaped ensembles of both large and small particles), and also negatively impact the stabilization of the resulting silver nanoparticles
Beschreibung:Date Completed 19.04.2013
Date Revised 21.11.2013
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/la303617f