Efficient fluorescence quenching in carbon dots by surface-doped metals--disruption of excited state redox processes and mechanistic implications

The carbon dots in this study were small carbon nanoparticles with the particle surface functionalized by oligomeric poly(ethylene glycol) diamine molecules. Upon photoexcitation, the brightly fluorescent carbon dots in aqueous solution served the function of excellent electron donors to reduce plat...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1985. - 28(2012), 46 vom: 20. Nov., Seite 16141-7
1. Verfasser: Xu, Juan (VerfasserIn)
Weitere Verfasser: Sahu, Sushant, Cao, Li, Bunker, Christopher E, Peng, Ge, Liu, Yamin, Fernando, K A Shiral, Wang, Ping, Guliants, Elena A, Meziani, Mohammed J, Qian, Haijun, Sun, Ya-Ping
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:The carbon dots in this study were small carbon nanoparticles with the particle surface functionalized by oligomeric poly(ethylene glycol) diamine molecules. Upon photoexcitation, the brightly fluorescent carbon dots in aqueous solution served the function of excellent electron donors to reduce platinum(IV) and gold(III) compounds into their corresponding metals to be deposited on the dot surface. The deposited metals even in very small amounts were found to have dramatic quenching effects on the fluorescence emission intensities, but essentially no effects on the observed fluorescence decays. The obviously exclusive near-neighbor static quenching could be attributed to the disruption of electron-hole radiative recombinations (otherwise responsible for the fluorescence emissions in carbon dots). The results provide important evidence for the availability of photogenerated electrons that could be harvested for productive purposes, which in turn supports the current mechanistic framework on fluorescence emission and photoinduced redox properties of carbon dots
Beschreibung:Date Completed 02.05.2013
Date Revised 20.11.2012
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/la302506e