Adhesion of colloidal particles on modified electrodes

The adhesion between colloidal silica particles and modified electrodes has been studied by direct force measurements with the colloidal probe technique based on the atomic force microscope (AFM). The combination of potentiostatic control of gold electrodes and chemical modification of their surface...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1985. - 28(2012), 48 vom: 04. Dez., Seite 16567-79
1. Verfasser: Kuznetsov, Volodymyr (VerfasserIn)
Weitere Verfasser: Papastavrou, Georg
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:The adhesion between colloidal silica particles and modified electrodes has been studied by direct force measurements with the colloidal probe technique based on the atomic force microscope (AFM). The combination of potentiostatic control of gold electrodes and chemical modification of their surface with self-assembled monolayers (SAMs) allows for the decoupling of forces due to the electrical double layers and functional groups at the solid/liquid interface. Adhesion on such electrodes can be tuned over a large range using the externally applied potential and the aqueous solution's ionic strength. By utilizing cantilevers with a high force constant, it is possible to separate the various contributions to adhesion in an unambiguous manner. These contributions comprise diffuse-layer overlap, van der Waals forces, solvent exclusion, and electrocapillarity. A quantitative description of the observed adhesion forces is obtained by taking into account the surface roughness of the silica particle. The main component of the adhesion forces originates from the overlap of the electrical double layers, which is tuned by the external potential. By contrast, effects due to electrocapillarity are of only minor importance. Based on our quantitative analysis, a new approach is proposed that allows tuning of the adhesion force as a function of the externally applied potential. We expect this approach to have important applications for the design of microelectromechanical systems (MEMS), the development of electrochemical sensors, and the application of micro- and nanomanipulation
Beschreibung:Date Completed 30.07.2013
Date Revised 04.12.2012
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/la3029726