Coaching the exploration and exploitation in active learning for interactive video retrieval

Conventional active learning approaches for interactive video/image retrieval usually assume the query distribution is unknown, as it is difficult to estimate with only a limited number of labeled instances available. Thus, it is easy to put the system in a dilemma whether to explore the feature spa...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 22(2013), 3 vom: 01. März, Seite 955-68
1. Verfasser: Wei, Xiao-Yong (VerfasserIn)
Weitere Verfasser: Yang, Zhen-Qun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM221772197
003 DE-627
005 20231224052659.0
007 cr uuu---uuuuu
008 231224s2013 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2012.2222902  |2 doi 
028 5 2 |a pubmed24n0739.xml 
035 |a (DE-627)NLM221772197 
035 |a (NLM)23060337 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wei, Xiao-Yong  |e verfasserin  |4 aut 
245 1 0 |a Coaching the exploration and exploitation in active learning for interactive video retrieval 
264 1 |c 2013 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 18.07.2013 
500 |a Date Revised 30.01.2013 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Conventional active learning approaches for interactive video/image retrieval usually assume the query distribution is unknown, as it is difficult to estimate with only a limited number of labeled instances available. Thus, it is easy to put the system in a dilemma whether to explore the feature space in uncertain areas for a better understanding of the query distribution or to harvest in certain areas for more relevant instances. In this paper, we propose a novel approach called coached active learning that makes the query distribution predictable through training and, therefore, avoids the risk of searching on a completely unknown space. The estimated distribution, which provides a more global view of the feature space, can be used to schedule not only the timing but also the step sizes of the exploration and the exploitation in a principled way. The results of the experiments on a large-scale data set from TRECVID 2005-2009 validate the efficiency and effectiveness of our approach, which demonstrates an encouraging performance when facing domain-shift, outperforms eight conventional active learning methods, and shows superiority to six state-of-the-art interactive video retrieval systems 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Yang, Zhen-Qun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 22(2013), 3 vom: 01. März, Seite 955-68  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:22  |g year:2013  |g number:3  |g day:01  |g month:03  |g pages:955-68 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2012.2222902  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 22  |j 2013  |e 3  |b 01  |c 03  |h 955-68