|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM221753834 |
003 |
DE-627 |
005 |
20231224052632.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2013 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1111/j.1469-8137.2012.04366.x
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0739.xml
|
035 |
|
|
|a (DE-627)NLM221753834
|
035 |
|
|
|a (NLM)23057485
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Bloemen, Jasper
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Transport of root-respired CO₂ via the transpiration stream affects aboveground carbon assimilation and CO₂ efflux in trees
|
264 |
|
1 |
|c 2013
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 21.05.2013
|
500 |
|
|
|a Date Revised 20.04.2021
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a CommentIn: New Phytol. 2013 Jan;197(2):353-5. - PMID 23253327
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.
|
520 |
|
|
|a Upward transport of CO₂ via the transpiration stream from belowground to aboveground tissues occurs in tree stems. Despite potentially important implications for our understanding of plant physiology, the fate of internally transported CO₂ derived from autotrophic respiratory processes remains unclear. We infused a ¹³CO₂-labeled aqueous solution into the base of 7-yr-old field-grown eastern cottonwood (Populus deltoides) trees to investigate the effect of xylem-transported CO₂ derived from the root system on aboveground carbon assimilation and CO₂ efflux. The ¹³C label was transported internally and detected throughout the tree. Up to 17% of the infused label was assimilated, while the remainder diffused to the atmosphere via stem and branch efflux. The largest amount of assimilated ¹³C was found in branch woody tissues, while only a small quantity was assimilated in the foliage. Petioles were more highly enriched in ¹³C than other leaf tissues. Our results confirm a recycling pathway for respired CO₂ and indicate that internal transport of CO₂ from the root system may confound the interpretation of efflux-based estimates of woody tissue respiration and patterns of carbohydrate allocation
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
4 |
|a Research Support, U.S. Gov't, Non-P.H.S.
|
650 |
|
7 |
|a Carbon Isotopes
|2 NLM
|
650 |
|
7 |
|a Carbon Dioxide
|2 NLM
|
650 |
|
7 |
|a 142M471B3J
|2 NLM
|
650 |
|
7 |
|a Carbon
|2 NLM
|
650 |
|
7 |
|a 7440-44-0
|2 NLM
|
700 |
1 |
|
|a McGuire, Mary Anne
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Aubrey, Doug P
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Teskey, Robert O
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Steppe, Kathy
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t The New phytologist
|d 1979
|g 197(2013), 2 vom: 11. Jan., Seite 555-565
|w (DE-627)NLM09818248X
|x 1469-8137
|7 nnns
|
773 |
1 |
8 |
|g volume:197
|g year:2013
|g number:2
|g day:11
|g month:01
|g pages:555-565
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1111/j.1469-8137.2012.04366.x
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 197
|j 2013
|e 2
|b 11
|c 01
|h 555-565
|