|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM221577491 |
003 |
DE-627 |
005 |
20231224052212.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2013 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/jcc.23145
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0738.xml
|
035 |
|
|
|a (DE-627)NLM221577491
|
035 |
|
|
|a (NLM)23037888
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Singh, Raman K
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Reaction energetics on long-range corrected density functional theory
|b Diels-Alder reactions
|
264 |
|
1 |
|c 2013
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 02.08.2013
|
500 |
|
|
|a Date Revised 25.11.2016
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a Copyright © 2012 Wiley Periodicals, Inc.
|
520 |
|
|
|a The possibility of quantitative reaction analysis on the orbital energies of long-range corrected density functional theory (LC-DFT) is presented. First, we calculated the Diels-Alder reaction enthalpies that have been poorly given by conventional functionals including B3LYP functional. As a result, it is found that the long-range correction drastically improves the reaction enthalpies. The barrier height energies were also computed for these reactions. Consequently, we found that dispersion correlation correction is also crucial to give accurate barrier height energies. It is, therefore, concluded that both long-range exchange interactions and dispersion correlations are essentially required in conventional functionals to investigate Diels-Alder reactions quantitatively. After confirming that LC-DFT accurately reproduces the orbital energies of the reactant and product molecules of the Diels-Alder reactions, the global hardness responses, the halves of highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) energy gaps, along the intrinsic reaction coordinates of two Diels-Alder reactions were computed. We noticed that LC-DFT results satisfy the maximum hardness rule for overall reaction paths while conventional functionals violate this rule on the reaction pathways. Furthermore, our results also show that the HOMO-LUMO gap variations are close to the reaction enthalpies for these Diels-Alder reactions. Based on these results, we foresee quantitative reaction analysis on the orbital energies
|
650 |
|
4 |
|a Journal Article
|
650 |
|
7 |
|a Ethylenes
|2 NLM
|
650 |
|
7 |
|a Maleic Anhydrides
|2 NLM
|
650 |
|
7 |
|a Maleimides
|2 NLM
|
650 |
|
7 |
|a maleimide
|2 NLM
|
650 |
|
7 |
|a 2519R1UGP8
|2 NLM
|
650 |
|
7 |
|a ethylene
|2 NLM
|
650 |
|
7 |
|a 91GW059KN7
|2 NLM
|
650 |
|
7 |
|a Acetylene
|2 NLM
|
650 |
|
7 |
|a OC7TV75O83
|2 NLM
|
700 |
1 |
|
|a Tsuneda, Takao
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Journal of computational chemistry
|d 1984
|g 34(2013), 5 vom: 15. Feb., Seite 379-86
|w (DE-627)NLM098138448
|x 1096-987X
|7 nnns
|
773 |
1 |
8 |
|g volume:34
|g year:2013
|g number:5
|g day:15
|g month:02
|g pages:379-86
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/jcc.23145
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 34
|j 2013
|e 5
|b 15
|c 02
|h 379-86
|