|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM221365818 |
003 |
DE-627 |
005 |
20231224051702.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2013 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/jcc.23128
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0738.xml
|
035 |
|
|
|a (DE-627)NLM221365818
|
035 |
|
|
|a (NLM)23015474
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Porta, Josep M
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Exploring the energy landscapes of flexible molecular loops using higher-dimensional continuation
|
264 |
|
1 |
|c 2013
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 10.06.2013
|
500 |
|
|
|a Date Revised 07.12.2022
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a Copyright © 2012 Wiley Periodicals, Inc.
|
520 |
|
|
|a The conformational space of a flexible molecular loop includes the set of conformations fulfilling the geometric loop-closure constraints and its energy landscape can be seen as a scalar field defined on this implicit set. Higher-dimensional continuation tools, recently developed in dynamical systems and also applied to robotics, provide efficient algorithms to trace out implicitly defined sets. This article describes these tools and applies them to obtain full descriptions of the energy landscapes of short molecular loops that, otherwise, can only be partially explored, mainly via sampling. Moreover, to deal with larger loops, this article exploits the higher-dimensional continuation tools to find local minima and minimum energy transition paths between them, without deviating from the loop-closure constraints. The proposed techniques are applied to previously studied molecules revealing the intricate structure of their energy landscapes
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
7 |
|a Cell Cycle Proteins
|2 NLM
|
650 |
|
7 |
|a Cyclooctanes
|2 NLM
|
650 |
|
7 |
|a Tetrahydrofolate Dehydrogenase
|2 NLM
|
650 |
|
7 |
|a EC 1.5.1.3
|2 NLM
|
650 |
|
7 |
|a Methyltransferases
|2 NLM
|
650 |
|
7 |
|a EC 2.1.1.-
|2 NLM
|
650 |
|
7 |
|a rlmE protein, E coli
|2 NLM
|
650 |
|
7 |
|a EC 2.1.1.-
|2 NLM
|
650 |
|
7 |
|a cyclooctane
|2 NLM
|
650 |
|
7 |
|a KKZ3KBS654
|2 NLM
|
700 |
1 |
|
|a Jaillet, Léonard
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Journal of computational chemistry
|d 1984
|g 34(2013), 3 vom: 30. Jan., Seite 234-44
|w (DE-627)NLM098138448
|x 1096-987X
|7 nnns
|
773 |
1 |
8 |
|g volume:34
|g year:2013
|g number:3
|g day:30
|g month:01
|g pages:234-44
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/jcc.23128
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 34
|j 2013
|e 3
|b 30
|c 01
|h 234-44
|