Fuzzy C-means clustering with local information and kernel metric for image segmentation

In this paper, we present an improved fuzzy C-means (FCM) algorithm for image segmentation by introducing a tradeoff weighted fuzzy factor and a kernel metric. The tradeoff weighted fuzzy factor depends on the space distance of all neighboring pixels and their gray-level difference simultaneously. B...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 22(2013), 2 vom: 29. Feb., Seite 573-84
1. Verfasser: Gong, Maoguo (VerfasserIn)
Weitere Verfasser: Liang, Yan, Shi, Jiao, Ma, Wenping, Ma, Jingjing
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM221301461
003 DE-627
005 20231224051527.0
007 cr uuu---uuuuu
008 231224s2013 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2012.2219547  |2 doi 
028 5 2 |a pubmed24n0737.xml 
035 |a (DE-627)NLM221301461 
035 |a (NLM)23008257 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Gong, Maoguo  |e verfasserin  |4 aut 
245 1 0 |a Fuzzy C-means clustering with local information and kernel metric for image segmentation 
264 1 |c 2013 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 19.06.2013 
500 |a Date Revised 14.01.2013 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this paper, we present an improved fuzzy C-means (FCM) algorithm for image segmentation by introducing a tradeoff weighted fuzzy factor and a kernel metric. The tradeoff weighted fuzzy factor depends on the space distance of all neighboring pixels and their gray-level difference simultaneously. By using this factor, the new algorithm can accurately estimate the damping extent of neighboring pixels. In order to further enhance its robustness to noise and outliers, we introduce a kernel distance measure to its objective function. The new algorithm adaptively determines the kernel parameter by using a fast bandwidth selection rule based on the distance variance of all data points in the collection. Furthermore, the tradeoff weighted fuzzy factor and the kernel distance measure are both parameter free. Experimental results on synthetic and real images show that the new algorithm is effective and efficient, and is relatively independent of this type of noise 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Liang, Yan  |e verfasserin  |4 aut 
700 1 |a Shi, Jiao  |e verfasserin  |4 aut 
700 1 |a Ma, Wenping  |e verfasserin  |4 aut 
700 1 |a Ma, Jingjing  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 22(2013), 2 vom: 29. Feb., Seite 573-84  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:22  |g year:2013  |g number:2  |g day:29  |g month:02  |g pages:573-84 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2012.2219547  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 22  |j 2013  |e 2  |b 29  |c 02  |h 573-84