|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM221260919 |
003 |
DE-627 |
005 |
20231224051429.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2013 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1111/j.1523-1739.2012.01929.x
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0737.xml
|
035 |
|
|
|a (DE-627)NLM221260919
|
035 |
|
|
|a (NLM)23003217
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Parks, Sean A
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Effects of weighting schemes on the identification of wildlife corridors generated with least-cost methods
|
264 |
|
1 |
|c 2013
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 20.06.2013
|
500 |
|
|
|a Date Revised 11.01.2013
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a ©2012 Society for Conservation Biology.
|
520 |
|
|
|a The importance of movement corridors for maintaining connectivity within metapopulations of wild animals is a cornerstone of conservation. One common approach for determining corridor locations is least-cost corridor (LCC) modeling, which uses algorithms within a geographic information system to search for routes with the lowest cumulative resistance between target locations on a landscape. However, the presentation of multiple LCCs that connect multiple locations generally assumes all corridors contribute equally to connectivity, regardless of the likelihood that animals will use them. Thus, LCCs may overemphasize seldom-used longer routes and underemphasize more frequently used shorter routes. We hypothesize that, depending on conservation objectives and available biological information, weighting individual corridors on the basis of species-specific movement, dispersal, or gene flow data may better identify effective corridors. We tested whether locations of key connectivity areas, defined as the highest 75th and 90th percentile cumulative weighted value of approximately 155,000 corridors, shift under different weighting scenarios. In addition, we quantified the amount and location of private land that intersect key connectivity areas under each weighting scheme. Some areas that appeared well connected when analyzed with unweighted corridors exhibited much less connectivity compared with weighting schemes that discount corridors with large effective distances. Furthermore, the amount and location of key connectivity areas that intersected private land varied among weighting schemes. We believe biological assumptions and conservation objectives should be explicitly incorporated to weight corridors when assessing landscape connectivity. These results are highly relevant to conservation planning because on the basis of recent interest by government agencies and nongovernmental organizations in maintaining and enhancing wildlife corridors, connectivity will likely be an important criterion for prioritization of land purchases and swaps
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, U.S. Gov't, Non-P.H.S.
|
700 |
1 |
|
|a McKelvey, Kevin S
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Schwartz, Michael K
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Conservation biology : the journal of the Society for Conservation Biology
|d 1999
|g 27(2013), 1 vom: 10. Feb., Seite 145-54
|w (DE-627)NLM098176803
|x 1523-1739
|7 nnns
|
773 |
1 |
8 |
|g volume:27
|g year:2013
|g number:1
|g day:10
|g month:02
|g pages:145-54
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1111/j.1523-1739.2012.01929.x
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 27
|j 2013
|e 1
|b 10
|c 02
|h 145-54
|