A biomechanical model of anther opening reveals the roles of dehydration and secondary thickening

© 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

Bibliographische Detailangaben
Veröffentlicht in:The New phytologist. - 1979. - 196(2012), 4 vom: 05. Dez., Seite 1030-1037
1. Verfasser: Nelson, M R (VerfasserIn)
Weitere Verfasser: Band, L R, Dyson, R J, Lessinnes, T, Wells, D M, Yang, C, Everitt, N M, Jensen, O E, Wilson, Z A
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:The New phytologist
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Arabidopsis Proteins MYB26 protein, Arabidopsis NST1 protein, Arabidopsis NST2 protein, Arabidopsis Transcription Factors Water 059QF0KO0R
Beschreibung
Zusammenfassung:© 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.
Understanding the processes that underlie pollen release is a prime target for controlling fertility to enable selective breeding and the efficient production of hybrid crops. Pollen release requires anther opening, which involves changes in the biomechanical properties of the anther wall. In this research, we develop and use a mathematical model to understand how these biomechanical processes lead to anther opening. Our mathematical model describing the biomechanics of anther opening incorporates the bilayer structure of the mature anther wall, which comprises the outer epidermal cell layer, whose turgor pressure is related to its hydration, and the endothecial layer, whose walls contain helical secondary thickening, which resists stretching and bending. The model describes how epidermal dehydration, in association with the thickened endothecial layer, creates forces within the anther wall causing it to bend outwards, resulting in anther opening and pollen release. The model demonstrates that epidermal dehydration can drive anther opening, and suggests why endothecial secondary thickening is essential for this process (explaining the phenotypes presented in the myb26 and nst1nst2 mutants). The research hypothesizes and demonstrates a biomechanical mechanism for anther opening, which appears to be conserved in many other biological situations where tissue movement occurs
Beschreibung:Date Completed 25.04.2013
Date Revised 22.03.2024
published: Print-Electronic
CommentIn: New Phytol. 2012 Dec;196(4):961-2. - PMID 23121185
Citation Status MEDLINE
ISSN:1469-8137
DOI:10.1111/j.1469-8137.2012.04329.x