Recognizing gestures by learning local motion signatures of HOG descriptors

We introduce a new gesture recognition framework based on learning local motion signatures (LMSs) of HOG descriptors introduced by [1]. Our main contribution is to propose a new probabilistic learning-classification scheme based on a reliable tracking of local features. After the generation of these...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 34(2012), 11 vom: 01. Nov., Seite 2247-58
1. Verfasser: Kaâniche, Mohamed-Bécha (VerfasserIn)
Weitere Verfasser: Brémond, François
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM221202161
003 DE-627
005 20231224051255.0
007 cr uuu---uuuuu
008 231224s2012 xx |||||o 00| ||eng c
028 5 2 |a pubmed24n0737.xml 
035 |a (DE-627)NLM221202161 
035 |a (NLM)22997128 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kaâniche, Mohamed-Bécha  |e verfasserin  |4 aut 
245 1 0 |a Recognizing gestures by learning local motion signatures of HOG descriptors 
264 1 |c 2012 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 29.04.2013 
500 |a Date Revised 21.09.2012 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a We introduce a new gesture recognition framework based on learning local motion signatures (LMSs) of HOG descriptors introduced by [1]. Our main contribution is to propose a new probabilistic learning-classification scheme based on a reliable tracking of local features. After the generation of these LMSs computed on one individual by tracking Histograms of Oriented Gradient (HOG) [2] descriptor, we learn a codebook of video-words (i.e., clusters of LMSs) using k-means algorithm on a learning gesture video database. Then, the video-words are compacted to a code-book of codewords by the Maximization of Mutual Information (MMI) algorithm. At the final step, we compare the LMSs generated for a new gesture w.r.t. the learned code-book via the k-nearest neighbors (k-NN) algorithm and a novel voting strategy. Our main contribution is the handling of the N to N mapping between codewords and gesture labels within the proposed voting strategy. Experiments have been carried out on two public gesture databases: KTH [3] and IXMAS [4]. Results show that the proposed method outperforms recent state-of-the-art methods 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Brémond, François  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 34(2012), 11 vom: 01. Nov., Seite 2247-58  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:34  |g year:2012  |g number:11  |g day:01  |g month:11  |g pages:2247-58 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 34  |j 2012  |e 11  |b 01  |c 11  |h 2247-58