Anisotropic interpolation of sparse generalized image samples

Practical image-acquisition systems are often modeled as a continuous-domain prefilter followed by an ideal sampler, where generalized samples are obtained after convolution with the impulse response of the device. In this paper, our goal is to interpolate images from a given subset of such samples....

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 22(2013), 2 vom: 21. Feb., Seite 459-72
1. Verfasser: Bourquard, Aurélien (VerfasserIn)
Weitere Verfasser: Unser, Michael
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM220935866
003 DE-627
005 20231224050630.0
007 cr uuu---uuuuu
008 231224s2013 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2012.2217346  |2 doi 
028 5 2 |a pubmed24n0736.xml 
035 |a (DE-627)NLM220935866 
035 |a (NLM)22968212 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Bourquard, Aurélien  |e verfasserin  |4 aut 
245 1 0 |a Anisotropic interpolation of sparse generalized image samples 
264 1 |c 2013 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 19.06.2013 
500 |a Date Revised 14.01.2013 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Practical image-acquisition systems are often modeled as a continuous-domain prefilter followed by an ideal sampler, where generalized samples are obtained after convolution with the impulse response of the device. In this paper, our goal is to interpolate images from a given subset of such samples. We express our solution in the continuous domain, considering consistent resampling as a data-fidelity constraint. To make the problem well posed and ensure edge-preserving solutions, we develop an efficient anisotropic regularization approach that is based on an improved version of the edge-enhancing anisotropic diffusion equation. Following variational principles, our reconstruction algorithm minimizes successive quadratic cost functionals. To ensure fast convergence, we solve the corresponding sequence of linear problems by using multigrid iterations that are specifically tailored to their sparse structure. We conduct illustrative experiments and discuss the potential of our approach both in terms of algorithmic design and reconstruction quality. In particular, we present results that use as little as 2% of the image samples 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Unser, Michael  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 22(2013), 2 vom: 21. Feb., Seite 459-72  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:22  |g year:2013  |g number:2  |g day:21  |g month:02  |g pages:459-72 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2012.2217346  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 22  |j 2013  |e 2  |b 21  |c 02  |h 459-72