A fuzzy inference method based on association rule analysis with application to river flood forecasting

In this paper, a computationally efficient version of the widely used Takagi-Sugeno (T-S) fuzzy reasoning method is proposed, and applied to river flood forecasting. It is well known that the number of fuzzy rules of traditional fuzzy reasoning methods exponentially increases as the number of input...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Water science and technology : a journal of the International Association on Water Pollution Research. - 1986. - 66(2012), 10 vom: 30., Seite 2090-8
1. Verfasser: Zhang, Chi (VerfasserIn)
Weitere Verfasser: Wang, Yilun, Zhang, Lili, Zhou, Huicheng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:Water science and technology : a journal of the International Association on Water Pollution Research
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652 4500
001 NLM220755515
003 DE-627
005 20250214093625.0
007 cr uuu---uuuuu
008 231224s2012 xx |||||o 00| ||eng c
024 7 |a 10.2166/wst.2012.420  |2 doi 
028 5 2 |a pubmed25n0735.xml 
035 |a (DE-627)NLM220755515 
035 |a (NLM)22949238 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Chi  |e verfasserin  |4 aut 
245 1 2 |a A fuzzy inference method based on association rule analysis with application to river flood forecasting 
264 1 |c 2012 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 03.01.2013 
500 |a Date Revised 05.09.2012 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a In this paper, a computationally efficient version of the widely used Takagi-Sugeno (T-S) fuzzy reasoning method is proposed, and applied to river flood forecasting. It is well known that the number of fuzzy rules of traditional fuzzy reasoning methods exponentially increases as the number of input parameters increases, often causing prohibitive computational burden. The proposed method greatly reduces the number of fuzzy rules by making use of the association rule analysis on historical data, and therefore achieves computational efficiency for the cases of a large number of input parameters. In the end, we apply this new method to a case study of river flood forecasting, which demonstrates that the proposed fuzzy reasoning engine can achieve better prediction accuracy than the widely used Muskingum-Cunge scheme 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Wang, Yilun  |e verfasserin  |4 aut 
700 1 |a Zhang, Lili  |e verfasserin  |4 aut 
700 1 |a Zhou, Huicheng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Water science and technology : a journal of the International Association on Water Pollution Research  |d 1986  |g 66(2012), 10 vom: 30., Seite 2090-8  |w (DE-627)NLM098149431  |x 0273-1223  |7 nnns 
773 1 8 |g volume:66  |g year:2012  |g number:10  |g day:30  |g pages:2090-8 
856 4 0 |u http://dx.doi.org/10.2166/wst.2012.420  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 66  |j 2012  |e 10  |b 30  |h 2090-8