|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM220590036 |
003 |
DE-627 |
005 |
20231224045814.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2012 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1111/j.1469-8137.2012.04278.x
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0735.xml
|
035 |
|
|
|a (DE-627)NLM220590036
|
035 |
|
|
|a (NLM)22931497
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Ehinger, Martine O
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Significant genetic and phenotypic changes arising from clonal growth of a single spore of an arbuscular mycorrhizal fungus over multiple generations
|
264 |
|
1 |
|c 2012
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 08.03.2013
|
500 |
|
|
|a Date Revised 16.04.2021
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a CommentIn: New Phytol. 2012 Nov;196(3):655-6. - PMID 23043587
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.
|
520 |
|
|
|a Arbuscular mycorrhizal fungi (AMF) are highly successful plant symbionts. They reproduce clonally producing multinucleate spores. It has been suggested that some AMF harbor genetically different nuclei. However, recent advances in sequencing the Glomus irregulare genome have indicated very low within-fungus polymorphism. We tested the null hypothesis that, with no genetic differences among nuclei, no significant genetic or phenotypic variation would occur among clonal single spore lines generated from one initial AMF spore. Furthermore, no additional variation would be expected in the following generations of single spore lines. Genetic diversity contained in one initial spore repeatedly gave rise to genetically different variants of the fungus with novel phenotypes. The genetic changes represented quantitative changes in allele frequencies, most probably as a result of changes in the frequency of genetic variation partitioned on different nuclei. The genetic and phenotypic variation is remarkable, given that it arose repeatedly from one clonal individual. Our results highlight the dynamic nature of AMF genetics. Even though within-fungus genetic variation is low, some is probably partitioned among nuclei and potentially causes changes in the phenotype. Our results are important for understanding AMF genetics, as well as for researchers and biotechnologists hoping to use AMF genetic diversity for the improvement of AMF inoculum
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
7 |
|a DNA, Fungal
|2 NLM
|
700 |
1 |
|
|a Croll, Daniel
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Koch, Alexander M
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Sanders, Ian R
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t The New phytologist
|d 1979
|g 196(2012), 3 vom: 01. Nov., Seite 853-861
|w (DE-627)NLM09818248X
|x 1469-8137
|7 nnns
|
773 |
1 |
8 |
|g volume:196
|g year:2012
|g number:3
|g day:01
|g month:11
|g pages:853-861
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1111/j.1469-8137.2012.04278.x
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 196
|j 2012
|e 3
|b 01
|c 11
|h 853-861
|