|
|
|
|
LEADER |
01000caa a22002652c 4500 |
001 |
NLM220587582 |
003 |
DE-627 |
005 |
20250214090609.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2012 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1021/la303037d
|2 doi
|
028 |
5 |
2 |
|a pubmed25n0735.xml
|
035 |
|
|
|a (DE-627)NLM220587582
|
035 |
|
|
|a (NLM)22931235
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Ishida, Naoyuki
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Hydrophobic attraction between silanated silica surfaces in the absence of bridging bubbles
|
264 |
|
1 |
|c 2012
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 19.02.2013
|
500 |
|
|
|a Date Revised 02.10.2012
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a The interaction forces between silanated silica surfaces on which there were neither nanobubbles nor a gas phase were measured using colloidal probe atomic force microscopy (AFM). To obtain hydrophobic surfaces without attached nanobubbles, an aqueous solution was introduced between the surfaces after an exchange process involving several solvents. In the approaching force curves obtained, an attractive force was observed from a distance of 10-25 nm, indicating the existence of an additional attractive force stronger than the van der Waals attraction. In the retracting force curves, a strong adhesion force was observed, and the value of this force was comparable to that of the capillary bridging force. The data clearly showed that although the bridging of nanobubbles is responsible for long-range hydrophobic attraction, there also exists an additional attractive force larger than the van der Waals attraction between hydrophobic surfaces without nanobubbles. Both the ionic strength and the temperature of the solution had little influence on the force. The possible origin of the force is discussed on the basis of the obtained results
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
7 |
|a Silanes
|2 NLM
|
650 |
|
7 |
|a Silicon Dioxide
|2 NLM
|
650 |
|
7 |
|a 7631-86-9
|2 NLM
|
700 |
1 |
|
|a Kusaka, Yasuyuki
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ushijima, Hirobumi
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Langmuir : the ACS journal of surfaces and colloids
|d 1985
|g 28(2012), 39 vom: 02. Okt., Seite 13952-9
|w (DE-627)NLM098181009
|x 1520-5827
|7 nnas
|
773 |
1 |
8 |
|g volume:28
|g year:2012
|g number:39
|g day:02
|g month:10
|g pages:13952-9
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1021/la303037d
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_721
|
951 |
|
|
|a AR
|
952 |
|
|
|d 28
|j 2012
|e 39
|b 02
|c 10
|h 13952-9
|