Interactions of inorganic oxide nanoparticles with sewage biosolids

The use of nanoparticles (NPs) in manufacturing continues to increase despite the growing concern over their potential environmental and health effects. Understanding the interaction of NPs and sewage sludge is crucial for determining the ultimate fate of NPs released to municipal wastewater treatme...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Water science and technology : a journal of the International Association on Water Pollution Research. - 1986. - 66(2012), 9 vom: 24., Seite 1821-7
1. Verfasser: Rottman, Jeff (VerfasserIn)
Weitere Verfasser: Shadman, Farhang, Sierra-Alvarez, Reyes
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:Water science and technology : a journal of the International Association on Water Pollution Research
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Oxides Sewage Silicon Dioxide 7631-86-9 Aluminum Oxide LMI26O6933
Beschreibung
Zusammenfassung:The use of nanoparticles (NPs) in manufacturing continues to increase despite the growing concern over their potential environmental and health effects. Understanding the interaction of NPs and sewage sludge is crucial for determining the ultimate fate of NPs released to municipal wastewater treatment plants (WWTPs) as those interactions will determine whether the bulk of the material is retained in the sludge or released in the effluent stream. Analyzing the affinity of aluminum oxide, cerium oxide, and silicon oxide NPs, which are commonly used in semiconductor manufacturing processes, for biosolids used in municipal WWTPs provides a basis for estimating their removal efficiency. Batch studies were performed and the NPs were shown to partition onto the cellular surface. At the maximum equilibrium values tested (75-92 mg nanoparticles/L), the concentration of Al(2)O(3), CeO(2) and SiO(2) associated with the sludge was 137, 238, and 28 mg/g-sludge VSS, respectively. These results suggest that electrostatic interactions play a major role in determining NP association with biosolids
Beschreibung:Date Completed 03.01.2013
Date Revised 21.11.2013
published: Print
Citation Status MEDLINE
ISSN:0273-1223
DOI:10.2166/wst.2012.354