Aggregation behavior of pegylated bile acid derivatives

Bile acids are amphiphilic endogenous steroids that act as anionic surfactants in the digestive tract and aggregate in aqueous solutions. Nonionic surfactants were synthesized by grafting poly(ethylene glycol) chains of various lengths (pegylation) to three bile acids (lithocholic, deoxycholic, and...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 28(2012), 37 vom: 18. Sept., Seite 13431-40
1. Verfasser: Le Dévédec, Frantz (VerfasserIn)
Weitere Verfasser: Fuentealba, Denis, Strandman, Satu, Bohne, Cornelia, Zhu, X X
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Bile Acids and Salts Surface-Active Agents Polyethylene Glycols 3WJQ0SDW1A Ibuprofen WK2XYI10QM
Beschreibung
Zusammenfassung:Bile acids are amphiphilic endogenous steroids that act as anionic surfactants in the digestive tract and aggregate in aqueous solutions. Nonionic surfactants were synthesized by grafting poly(ethylene glycol) chains of various lengths (pegylation) to three bile acids (lithocholic, deoxycholic, and cholic acid) using anionic polymerization. The aggregation properties of the derivatives were studied with viscosity measurements and light scattering as well as with steady-state and time-resolved fluorescence techniques, and the aggregates were visualized by transmission electron microscopy to elucidate the effect of pegylation on the aggregation process. The fluorescence results showed a good correlation with the capacity of the bile acid derivatives to solubilize a hydrophobic drug molecule. The solubilization of ibuprofen depends on the length and the number of grafted PEG chains, and the solubilization efficiency increases with fewer PEG chains on the bile acid. The results indicate their potential for use in the design of new bile acid-based drug-delivery systems
Beschreibung:Date Completed 24.01.2013
Date Revised 01.12.2018
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/la303218q