Photosynthetic and physiological analysis of the rice high-chlorophyll mutant (Gc)

Copyright © 2012 Elsevier Masson SAS. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Plant physiology and biochemistry : PPB. - 1991. - 60(2012) vom: 21. Nov., Seite 81-7
1. Verfasser: Kang, Zhenhui (VerfasserIn)
Weitere Verfasser: Li, Guanrong, Huang, Junli, Niu, Xiaodong, Zou, Hanyan, Zang, Guangchao, Wenwen, Yihao, Wang, Guixue
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:Plant physiology and biochemistry : PPB
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Light-Harvesting Protein Complexes Photosystem I Protein Complex Photosystem II Protein Complex RNA, Plant Thylakoid Membrane Proteins Chlorophyll 1406-65-1
Beschreibung
Zusammenfassung:Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Chlorophyll (Chl) molecules are essential for harvesting light energy in photosynthesis. A rice high-chlorophyll mutant (Gc) with significantly increased Chl b was identified previously in Zhenshan 97B (Oryza sativa indica). However, the mechanism underlying this higher Chl b content and its effects on photosynthetic efficiency are still unclear. Immunoblot and blue native polyacrylamide gel electrophoresis (BN-PAGE) with a second dimension electrophoresis followed by the matrix-assisted laser-desorption/ionization time-of-flight (MALDI-TOF) analysis showed that a few core proteins of photosystem I (PSI) and photosystem II (PSII), and light-harvesting complex II (LHCII) proteins were overexpressed in the mutant plants. Remarkable differences in chloroplast ultrastructure were observed between the wild-type and mutant plants, with the latter having more highly stacked and larger grana. Chl florescence analysis demonstrated that Gc had markedly increased quantum efficiency of photosystem II (ΦPSII), photochemical quenching (qP), non-photochemical quenching (qN) and electron transport rate (ETR). This morphological and physiological adaptation might confer a higher photosynthetic capacity in Gc than the wild-type
Beschreibung:Date Completed 24.12.2013
Date Revised 30.09.2020
published: Print-Electronic
Citation Status MEDLINE
ISSN:1873-2690
DOI:10.1016/j.plaphy.2012.07.019