GFP-tagging of Arabidopsis acyl-activating enzymes raises the issue of peroxisome-chloroplast import competition versus dual localization

Copyright © 2012 Elsevier GmbH. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Journal of plant physiology. - 1979. - 169(2012), 16 vom: 01. Nov., Seite 1631-8
1. Verfasser: Hooks, Katarzyna B (VerfasserIn)
Weitere Verfasser: Turner, James E, Graham, Ian A, Runions, John, Hooks, Mark A
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:Journal of plant physiology
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Arabidopsis Proteins Luminescent Agents Recombinant Fusion Proteins Green Fluorescent Proteins 147336-22-9 Coenzyme A Ligases EC 6.2.1.- AAE18 protein, Arabidopsis EC 6.2.6.-
Beschreibung
Zusammenfassung:Copyright © 2012 Elsevier GmbH. All rights reserved.
Protein sequence analysis of a subfamily of 18 Arabidopsis acyl-activating enzymes (AAE) for organelle targeting signals revealed that eight of them possessed putative peroxisomal targeting signals (PTS1), five of which belonged to Clade VI of the AAE superfamily. Peroxisomal localization was confirmed by confocal microscopy of green fluorescent protein (GFP)-AAE fusion proteins co-localizing with peroxisomal RFP. The sequence analysis also revealed that all enzymes of Clade VI possess N-terminal regions indicative of chloroplast transit peptides (cTP). Among the five Clade VI peroxisomal enzymes tested, masking the PTS1 signal with GFP redirected three to plastids. In addition, three other peroxisomal AAEs appeared to be redirected to plastids in AAE-GFP fusion constructs. Due to the lack of evidence supporting plastid localization, we propose that competition dictates the exclusive localization to peroxisomes. AAE2 of Clade VI was the only enzyme with a putative mitochondrial targeting sequence, and it appeared to be targeted to mitochondria. The remainder of the AAEs appeared to be localized to plastids or cytosol. The AAE9-GFP fusion protein appeared to be located within discreet structures within plastids that may be plastoglobules. AAE15-GFP, but not AAE16-GFP appeared to be located in the chloroplast envelope. The number of examples is increasing whereby proteins located within other compartments contribute to plastid function. We provide an example of this through the light-sensitive phenotype of mutants of AAE2
Beschreibung:Date Completed 13.02.2013
Date Revised 30.09.2020
published: Print-Electronic
Citation Status MEDLINE
ISSN:1618-1328
DOI:10.1016/j.jplph.2012.05.026