Video object tracking in the compressed domain using spatio-temporal Markov random fields

Despite the recent progress in both pixel-domain and compressed-domain video object tracking, the need for a tracking framework with both reasonable accuracy and reasonable complexity still exists. This paper presents a method for tracking moving objects in H.264/AVC-compressed video sequences using...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 22(2013), 1 vom: 01. Jan., Seite 300-13
1. Verfasser: Khatoonabadi, Sayed Hossein (VerfasserIn)
Weitere Verfasser: Bajić, Ivan V
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652c 4500
001 NLM220387478
003 DE-627
005 20250214083123.0
007 cr uuu---uuuuu
008 231224s2013 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2012.2214049  |2 doi 
028 5 2 |a pubmed25n0734.xml 
035 |a (DE-627)NLM220387478 
035 |a (NLM)22910117 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Khatoonabadi, Sayed Hossein  |e verfasserin  |4 aut 
245 1 0 |a Video object tracking in the compressed domain using spatio-temporal Markov random fields 
264 1 |c 2013 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 03.06.2013 
500 |a Date Revised 27.12.2012 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Despite the recent progress in both pixel-domain and compressed-domain video object tracking, the need for a tracking framework with both reasonable accuracy and reasonable complexity still exists. This paper presents a method for tracking moving objects in H.264/AVC-compressed video sequences using a spatio-temporal Markov random field (ST-MRF) model. An ST-MRF model naturally integrates the spatial and temporal aspects of the object's motion. Built upon such a model, the proposed method works in the compressed domain and uses only the motion vectors (MVs) and block coding modes from the compressed bitstream to perform tracking. First, the MVs are preprocessed through intracoded block motion approximation and global motion compensation. At each frame, the decision of whether a particular block belongs to the object being tracked is made with the help of the ST-MRF model, which is updated from frame to frame in order to follow the changes in the object's motion. The proposed method is tested on a number of standard sequences, and the results demonstrate its advantages over some of the recent state-of-the-art methods 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Bajić, Ivan V  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 22(2013), 1 vom: 01. Jan., Seite 300-13  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:22  |g year:2013  |g number:1  |g day:01  |g month:01  |g pages:300-13 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2012.2214049  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 22  |j 2013  |e 1  |b 01  |c 01  |h 300-13