Reinitialization-free level set evolution via reaction diffusion

This paper presents a novel reaction-diffusion (RD) method for implicit active contours that is completely free of the costly reinitialization procedure in level set evolution (LSE). A diffusion term is introduced into LSE, resulting in an RD-LSE equation, from which a piecewise constant solution ca...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 22(2013), 1 vom: 01. Jan., Seite 258-71
1. Verfasser: Zhang, Kaihua (VerfasserIn)
Weitere Verfasser: Zhang, Lei, Song, Huihui, Zhang, David
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652c 4500
001 NLM220387443
003 DE-627
005 20250214083123.0
007 cr uuu---uuuuu
008 231224s2013 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2012.2214046  |2 doi 
028 5 2 |a pubmed25n0734.xml 
035 |a (DE-627)NLM220387443 
035 |a (NLM)22910114 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Kaihua  |e verfasserin  |4 aut 
245 1 0 |a Reinitialization-free level set evolution via reaction diffusion 
264 1 |c 2013 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 03.06.2013 
500 |a Date Revised 27.12.2012 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a This paper presents a novel reaction-diffusion (RD) method for implicit active contours that is completely free of the costly reinitialization procedure in level set evolution (LSE). A diffusion term is introduced into LSE, resulting in an RD-LSE equation, from which a piecewise constant solution can be derived. In order to obtain a stable numerical solution from the RD-based LSE, we propose a two-step splitting method to iteratively solve the RD-LSE equation, where we first iterate the LSE equation, then solve the diffusion equation. The second step regularizes the level set function obtained in the first step to ensure stability, and thus the complex and costly reinitialization procedure is completely eliminated from LSE. By successfully applying diffusion to LSE, the RD-LSE model is stable by means of the simple finite difference method, which is very easy to implement. The proposed RD method can be generalized to solve the LSE for both variational level set method and partial differential equation-based level set method. The RD-LSE method shows very good performance on boundary antileakage. The extensive and promising experimental results on synthetic and real images validate the effectiveness of the proposed RD-LSE approach 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Zhang, Lei  |e verfasserin  |4 aut 
700 1 |a Song, Huihui  |e verfasserin  |4 aut 
700 1 |a Zhang, David  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 22(2013), 1 vom: 01. Jan., Seite 258-71  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:22  |g year:2013  |g number:1  |g day:01  |g month:01  |g pages:258-71 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2012.2214046  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 22  |j 2013  |e 1  |b 01  |c 01  |h 258-71