A k-space method for moderately nonlinear wave propagation

A k-space method for moderately nonlinear wave propagation in absorptive media is presented. The Westervelt equation is first transferred into k-space via Fourier transformation, and is solved by a modified wave-vector time-domain scheme. The present approach is not limited to forward propagation or...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control. - 1986. - 59(2012), 8 vom: 24. Aug., Seite 1664-73
1. Verfasser: Jing, Yun (VerfasserIn)
Weitere Verfasser: Wang, Tianren, Clement, Greg T
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Schlagworte:Journal Article Research Support, N.I.H., Extramural
LEADER 01000naa a22002652 4500
001 NLM220286337
003 DE-627
005 20231224045056.0
007 cr uuu---uuuuu
008 231224s2012 xx |||||o 00| ||eng c
024 7 |a 10.1109/TUFFC.2012.2372  |2 doi 
028 5 2 |a pubmed24n0734.xml 
035 |a (DE-627)NLM220286337 
035 |a (NLM)22899114 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Jing, Yun  |e verfasserin  |4 aut 
245 1 2 |a A k-space method for moderately nonlinear wave propagation 
264 1 |c 2012 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 17.12.2012 
500 |a Date Revised 21.10.2021 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a A k-space method for moderately nonlinear wave propagation in absorptive media is presented. The Westervelt equation is first transferred into k-space via Fourier transformation, and is solved by a modified wave-vector time-domain scheme. The present approach is not limited to forward propagation or parabolic approximation. One- and two-dimensional problems are investigated to verify the method by comparing results to analytic solutions and finite-difference time-domain (FDTD) method. It is found that to obtain accurate results in homogeneous media, the grid size can be as little as two points per wavelength, and for a moderately nonlinear problem, the Courant-Friedrichs-Lewy number can be as large as 0.4. Through comparisons with the conventional FDTD method, the k-space method for nonlinear wave propagation is shown here to be computationally more efficient and accurate. The k-space method is then employed to study three-dimensional nonlinear wave propagation through the skull, which shows that a relatively accurate focusing can be achieved in the brain at a high frequency by sending a low frequency from the transducer. Finally, implementations of the k-space method using a single graphics processing unit shows that it required about one-seventh the computation time of a single-core CPU calculation 
650 4 |a Journal Article 
650 4 |a Research Support, N.I.H., Extramural 
700 1 |a Wang, Tianren  |e verfasserin  |4 aut 
700 1 |a Clement, Greg T  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on ultrasonics, ferroelectrics, and frequency control  |d 1986  |g 59(2012), 8 vom: 24. Aug., Seite 1664-73  |w (DE-627)NLM098181017  |x 1525-8955  |7 nnns 
773 1 8 |g volume:59  |g year:2012  |g number:8  |g day:24  |g month:08  |g pages:1664-73 
856 4 0 |u http://dx.doi.org/10.1109/TUFFC.2012.2372  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_24 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 59  |j 2012  |e 8  |b 24  |c 08  |h 1664-73