Sampling optimization for printer characterization by direct search

Printer characterization usually requires many printer inputs and corresponding color measurements of the printed outputs. In this brief, a sampling optimization for printer characterization on the basis of direct search is proposed to maintain high color accuracy with a reduction in the number of c...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 21(2012), 12 vom: 01. Dez., Seite 4868-73
1. Verfasser: Bianco, Simone (VerfasserIn)
Weitere Verfasser: Schettini, Raimondo
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM220016844
003 DE-627
005 20231224044341.0
007 cr uuu---uuuuu
008 231224s2012 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2012.2211029  |2 doi 
028 5 2 |a pubmed24n0733.xml 
035 |a (DE-627)NLM220016844 
035 |a (NLM)22868573 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Bianco, Simone  |e verfasserin  |4 aut 
245 1 0 |a Sampling optimization for printer characterization by direct search 
264 1 |c 2012 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 13.05.2013 
500 |a Date Revised 29.11.2012 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Printer characterization usually requires many printer inputs and corresponding color measurements of the printed outputs. In this brief, a sampling optimization for printer characterization on the basis of direct search is proposed to maintain high color accuracy with a reduction in the number of characterization samples required. The proposed method is able to match a given level of color accuracy requiring, on average, a characterization set cardinality which is almost one-fourth of that required by the uniform sampling, while the best method in the state of the art needs almost one-third. The number of characterization samples required can be further reduced if the proposed algorithm is coupled with a sequential optimization method that refines the sample values in the device-independent color space. The proposed sampling optimization method is extended to deal with multiple substrates simultaneously, giving statistically better colorimetric accuracy (at the α = 0.05 significance level) than sampling optimization techniques in the state of the art optimized for each individual substrate, thus allowing use of a single set of characterization samples for multiple substrates 
650 4 |a Journal Article 
700 1 |a Schettini, Raimondo  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 21(2012), 12 vom: 01. Dez., Seite 4868-73  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:21  |g year:2012  |g number:12  |g day:01  |g month:12  |g pages:4868-73 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2012.2211029  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 21  |j 2012  |e 12  |b 01  |c 12  |h 4868-73