Wang-Landau Monte Carlo-based tracking methods for abrupt motions

We propose a novel tracking algorithm based on the Wang-Landau Monte Carlo (WLMC) sampling method for dealing with abrupt motions efficiently. Abrupt motions cause conventional tracking methods to fail because they violate the motion smoothness constraint. To address this problem, we introduce the W...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 35(2013), 4 vom: 01. Apr., Seite 1011-24
1. Verfasser: Kwon, Junseok (VerfasserIn)
Weitere Verfasser: Lee, Kyoung Mu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM219854807
003 DE-627
005 20231224043943.0
007 cr uuu---uuuuu
008 231224s2013 xx |||||o 00| ||eng c
028 5 2 |a pubmed24n0733.xml 
035 |a (DE-627)NLM219854807 
035 |a (NLM)22848132 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kwon, Junseok  |e verfasserin  |4 aut 
245 1 0 |a Wang-Landau Monte Carlo-based tracking methods for abrupt motions 
264 1 |c 2013 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 04.11.2013 
500 |a Date Revised 04.06.2013 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a We propose a novel tracking algorithm based on the Wang-Landau Monte Carlo (WLMC) sampling method for dealing with abrupt motions efficiently. Abrupt motions cause conventional tracking methods to fail because they violate the motion smoothness constraint. To address this problem, we introduce the Wang-Landau sampling method and integrate it into a Markov Chain Monte Carlo (MCMC)-based tracking framework. By employing the novel density-of-states term estimated by the Wang-Landau sampling method into the acceptance ratio of MCMC, our WLMC-based tracking method alleviates the motion smoothness constraint and robustly tracks the abrupt motions. Meanwhile, the marginal likelihood term of the acceptance ratio preserves the accuracy in tracking smooth motions. The method is then extended to obtain good performance in terms of scalability, even on a high-dimensional state space. Hence, it covers drastic changes in not only position but also scale of a target. To achieve this, we modify our method by combining it with the N-fold way algorithm and present the N-Fold Wang-Landau (NFWL)-based tracking method. The N-fold way algorithm helps estimate the density-of-states with a smaller number of samples. Experimental results demonstrate that our approach efficiently samples the states of the target, even in a whole state space, without loss of time, and tracks the target accurately and robustly when position and scale are changing severely 
650 4 |a Journal Article 
700 1 |a Lee, Kyoung Mu  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 35(2013), 4 vom: 01. Apr., Seite 1011-24  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:35  |g year:2013  |g number:4  |g day:01  |g month:04  |g pages:1011-24 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 35  |j 2013  |e 4  |b 01  |c 04  |h 1011-24