Multimodal graph-based reranking for web image search

This paper introduces a web image search reranking approach that explores multiple modalities in a graph-based learning scheme. Different from the conventional methods that usually adopt a single modality or integrate multiple modalities into a long feature vector, our approach can effectively integ...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 21(2012), 11 vom: 15. Nov., Seite 4649-61
1. Verfasser: Wang, Meng (VerfasserIn)
Weitere Verfasser: Li, Hao, Tao, Dacheng, Lu, Ke, Wu, Xindong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000naa a22002652 4500
001 NLM219704759
003 DE-627
005 20231224043556.0
007 cr uuu---uuuuu
008 231224s2012 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2012.2207397  |2 doi 
028 5 2 |a pubmed24n0732.xml 
035 |a (DE-627)NLM219704759 
035 |a (NLM)22829401 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Meng  |e verfasserin  |4 aut 
245 1 0 |a Multimodal graph-based reranking for web image search 
264 1 |c 2012 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 18.03.2013 
500 |a Date Revised 18.10.2012 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This paper introduces a web image search reranking approach that explores multiple modalities in a graph-based learning scheme. Different from the conventional methods that usually adopt a single modality or integrate multiple modalities into a long feature vector, our approach can effectively integrate the learning of relevance scores, weights of modalities, and the distance metric and its scaling for each modality into a unified scheme. In this way, the effects of different modalities can be adaptively modulated and better reranking performance can be achieved. We conduct experiments on a large dataset that contains more than 1000 queries and 1 million images to evaluate our approach. Experimental results demonstrate that the proposed reranking approach is more robust than using each individual modality, and it also performs better than many existing methods 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Li, Hao  |e verfasserin  |4 aut 
700 1 |a Tao, Dacheng  |e verfasserin  |4 aut 
700 1 |a Lu, Ke  |e verfasserin  |4 aut 
700 1 |a Wu, Xindong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 21(2012), 11 vom: 15. Nov., Seite 4649-61  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:21  |g year:2012  |g number:11  |g day:15  |g month:11  |g pages:4649-61 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2012.2207397  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 21  |j 2012  |e 11  |b 15  |c 11  |h 4649-61