Non-native plants and soil microbes : potential contributors to the consistent reduction in soil aggregate stability caused by the disturbance of North American grasslands
© 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.
Veröffentlicht in: | The New phytologist. - 1979. - 196(2012), 1 vom: 15. Okt., Seite 212-222 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2012
|
Zugriff auf das übergeordnete Werk: | The New phytologist |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. Soil Water 059QF0KO0R |
Zusammenfassung: | © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust. • Soil aggregate stability is an important ecosystem property that is altered by anthropogenic disturbance. Yet, the generalization of these alterations and the identification of the main contributors are limited by the absence of cross-site comparisons and the application of inconsistent methodologies across regions. • We assessed aggregate stability in paired remnant and post-disturbance grasslands across California, shortgrass and tallgrass prairies, and in manipulative experiments of plant composition and soil microbial inoculation. • Grasslands recovering from anthropogenic disturbance consistently had lower aggregate stability than remnants. Across all grasslands, non-native plant diversity was significantly associated with reduced soil aggregate stability. A negative effect of non-native plants on aggregate stability was also observed in a mesocosm experiment comparing native and non-native plants from California grasslands. Moreover, an inoculation study demonstrated that the degradation of the microbial community also contributes to the decline in soil aggregate stability in disturbed grasslands. • Anthropogenic disturbance consistently reduced water-stable aggregates. The stability of aggregates was reduced by non-native plants and the degradation of the native soil microbial community. This latter effect might contribute to the sustained decline in aggregate stability following anthropogenic disturbance. Further exploration is advocated to understand the generality of these potential mechanisms |
---|---|
Beschreibung: | Date Completed 03.01.2013 Date Revised 16.04.2021 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1469-8137 |
DOI: | 10.1111/j.1469-8137.2012.04233.x |