Layered object models for image segmentation
We formulate a layered model for object detection and image segmentation. We describe a generative probabilistic model that composites the output of a bank of object detectors in order to define shape masks and explain the appearance, depth ordering, and labels of all pixels in an image. Notably, ou...
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence. - 1979. - 34(2012), 9 vom: 01. Sept., Seite 1731-43 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2012
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on pattern analysis and machine intelligence |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. |
Zusammenfassung: | We formulate a layered model for object detection and image segmentation. We describe a generative probabilistic model that composites the output of a bank of object detectors in order to define shape masks and explain the appearance, depth ordering, and labels of all pixels in an image. Notably, our system estimates both class labels and object instance labels. Building on previous benchmark criteria for object detection and image segmentation, we define a novel score that evaluates both class and instance segmentation. We evaluate our system on the PASCAL 2009 and 2010 segmentation challenge data sets and show good test results with state-of-the-art performance in several categories, including segmenting humans |
---|---|
Beschreibung: | Date Completed 05.02.2013 Date Revised 20.07.2012 published: Print Citation Status PubMed-not-MEDLINE |
ISSN: | 1939-3539 |
DOI: | 10.1109/TPAMI.2011.208 |