Paradox of stability of nanoparticles at very low ionic strength

The scaling of electrical double layer interaction energy from a plate-plate system to a sphere-plate system was reexamined, and it was found that accurate scaling without resorting to the Derjaguin approximation theoretically predicts the destabilization of nanoparticles in water depleted of added...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 28(2012), 30 vom: 31. Juli, Seite 11032-41
1. Verfasser: Lin, Shihong (VerfasserIn)
Weitere Verfasser: Wiesner, Mark R
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:The scaling of electrical double layer interaction energy from a plate-plate system to a sphere-plate system was reexamined, and it was found that accurate scaling without resorting to the Derjaguin approximation theoretically predicts the destabilization of nanoparticles in water depleted of added electrolyte and, consequentially, a maximum stability at a moderate ionic strength. This theoretical feature re-emphasizes the dual-role nature of added electrolyte that was supported by experimental results of direct surface force measurement but not by those of colloidal stability of nanoparticle deposition/aggregation. Inconsistences between the theoretical prediction and the experimental observation and between experimental observations in different systems were discussed. Possible reasons leading to the inconsistences were explored, including the effect of curvature, the contribution from counterions, the mode of interaction, and the applicability of an equilibrium model to describe the colloidal interaction of a nanoparticle suspension
Beschreibung:Date Completed 20.12.2012
Date Revised 31.07.2012
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/la3016589