The effects of copper, manganese and zinc on plant growth and elemental accumulation in the manganese-hyperaccumulator Phytolacca americana

Copyright © 2012 Elsevier GmbH. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Journal of plant physiology. - 1979. - 169(2012), 13 vom: 01. Sept., Seite 1243-52
1. Verfasser: Zhao, Huijun (VerfasserIn)
Weitere Verfasser: Wu, Liangqi, Chai, Tuanyao, Zhang, Yuxiu, Tan, Jinjuan, Ma, Shengwen
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:Journal of plant physiology
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Metals, Heavy Soil Pollutants Manganese 42Z2K6ZL8P Copper 789U1901C5 guaiacol peroxidase EC 1.11.1.- mehr... Ascorbate Peroxidases EC 1.11.1.11 Catalase EC 1.11.1.6 Peroxidase EC 1.11.1.7 Superoxide Dismutase EC 1.15.1.1 Glutathione Transferase EC 2.5.1.18 Zinc J41CSQ7QDS
LEADER 01000naa a22002652 4500
001 NLM219422184
003 DE-627
005 20231224042904.0
007 cr uuu---uuuuu
008 231224s2012 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.jplph.2012.04.016  |2 doi 
028 5 2 |a pubmed24n0731.xml 
035 |a (DE-627)NLM219422184 
035 |a (NLM)22796009 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhao, Huijun  |e verfasserin  |4 aut 
245 1 4 |a The effects of copper, manganese and zinc on plant growth and elemental accumulation in the manganese-hyperaccumulator Phytolacca americana 
264 1 |c 2012 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 05.02.2013 
500 |a Date Revised 10.03.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Copyright © 2012 Elsevier GmbH. All rights reserved. 
520 |a Synchrotron radiation X-ray fluorescence (SRXRF) and inductively coupled plasma mass spectrometry were used to estimate major, minor and trace elements in Cu-, Zn- and Mn-treated Phytolacca americana. The effects of the addition of Cu, Zn and Mn on morphological parameters, such as root length, shoot height, and fresh and dry weights of shoots and roots, were also examined. In addition, the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), guaiacol peroxidases (GPX) and catalase (CAT) and the expression of Fe-SOD, Cu/Zn-SOD, metallothionein-2 and glutathione S-transferase (GST) exposed to the highest amounts of Cu, Zn or Mn were detected. Our results confirmed the following: (1) Zn supplementation leads to chlorosis, disturbed elemental homeostasis and decreased concentrations of micro- and macroelements such as Fe, Mg, Mn, Ca and K. Cu competed with Fe, Mn and Zn uptake in plants supplemented with 25 μM Cu. However, no antagonistic interactions took place between Cu, Zn, Mn and Fe uptake in plants supplemented with 100 μM Cu. Mn supplementation at various concentrations had no negative effects on elemental deficits. Mn was co-located with high concentrations of Fe and Zn in mature leaves and the concentrations of macro elements were unchanged. (2) P. americana supplemented with increased concentrations of Zn and Cu exhibited lower biomass production and reduced plant growth. (3) When plants were supplemented with the highest Zn and Cu concentrations, symptoms of toxicity corresponded to decreased SOD or CAT activities and increased APX and GPX activities. However, Mn tolerance corresponded to increased SOD and CAT activities and decreased POD and APX activities. Our study revealed that heavy metals partially exert toxicity by disturbing the nutrient balance and modifying enzyme activities that induce damage in plants. However, P. americana has evolved hyper accumulating mechanisms to maintain elemental balance and redox homeostasis under excess Mn 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 7 |a Metals, Heavy  |2 NLM 
650 7 |a Soil Pollutants  |2 NLM 
650 7 |a Manganese  |2 NLM 
650 7 |a 42Z2K6ZL8P  |2 NLM 
650 7 |a Copper  |2 NLM 
650 7 |a 789U1901C5  |2 NLM 
650 7 |a guaiacol peroxidase  |2 NLM 
650 7 |a EC 1.11.1.-  |2 NLM 
650 7 |a Ascorbate Peroxidases  |2 NLM 
650 7 |a EC 1.11.1.11  |2 NLM 
650 7 |a Catalase  |2 NLM 
650 7 |a EC 1.11.1.6  |2 NLM 
650 7 |a Peroxidase  |2 NLM 
650 7 |a EC 1.11.1.7  |2 NLM 
650 7 |a Superoxide Dismutase  |2 NLM 
650 7 |a EC 1.15.1.1  |2 NLM 
650 7 |a Glutathione Transferase  |2 NLM 
650 7 |a EC 2.5.1.18  |2 NLM 
650 7 |a Zinc  |2 NLM 
650 7 |a J41CSQ7QDS  |2 NLM 
700 1 |a Wu, Liangqi  |e verfasserin  |4 aut 
700 1 |a Chai, Tuanyao  |e verfasserin  |4 aut 
700 1 |a Zhang, Yuxiu  |e verfasserin  |4 aut 
700 1 |a Tan, Jinjuan  |e verfasserin  |4 aut 
700 1 |a Ma, Shengwen  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of plant physiology  |d 1979  |g 169(2012), 13 vom: 01. Sept., Seite 1243-52  |w (DE-627)NLM098174622  |x 1618-1328  |7 nnns 
773 1 8 |g volume:169  |g year:2012  |g number:13  |g day:01  |g month:09  |g pages:1243-52 
856 4 0 |u http://dx.doi.org/10.1016/j.jplph.2012.04.016  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 169  |j 2012  |e 13  |b 01  |c 09  |h 1243-52