A Robust and Efficient Method for Steady State Patterns in Reaction-Diffusion Systems

An inhomogeneous steady state pattern of nonlinear reaction-diffusion equations with no-flux boundary conditions is usually computed by solving the corresponding time-dependent reaction-diffusion equations using temporal schemes. Nonlinear solvers (e.g., Newton's method) take less CPU time in d...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics. - 1998. - 231(2012), 15 vom: 01. Juni, Seite 5062-5077
1. Verfasser: Lo, Wing-Cheong (VerfasserIn)
Weitere Verfasser: Chen, Long, Wang, Ming, Nie, Qing
Format: Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:Journal of computational physics
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM21925303X
003 DE-627
005 20250214052816.0
007 tu
008 231224s2012 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0730.xml 
035 |a (DE-627)NLM21925303X 
035 |a (NLM)22773849 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lo, Wing-Cheong  |e verfasserin  |4 aut 
245 1 2 |a A Robust and Efficient Method for Steady State Patterns in Reaction-Diffusion Systems 
264 1 |c 2012 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Revised 21.10.2021 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a An inhomogeneous steady state pattern of nonlinear reaction-diffusion equations with no-flux boundary conditions is usually computed by solving the corresponding time-dependent reaction-diffusion equations using temporal schemes. Nonlinear solvers (e.g., Newton's method) take less CPU time in direct computation for the steady state; however, their convergence is sensitive to the initial guess, often leading to divergence or convergence to spatially homogeneous solution. Systematically numerical exploration of spatial patterns of reaction-diffusion equations under different parameter regimes requires that the numerical method be efficient and robust to initial condition or initial guess, with better likelihood of convergence to an inhomogeneous pattern. Here, a new approach that combines the advantages of temporal schemes in robustness and Newton's method in fast convergence in solving steady states of reaction-diffusion equations is proposed. In particular, an adaptive implicit Euler with inexact solver (AIIE) method is found to be much more efficient than temporal schemes and more robust in convergence than typical nonlinear solvers (e.g., Newton's method) in finding the inhomogeneous pattern. Application of this new approach to two reaction-diffusion equations in one, two, and three spatial dimensions, along with direct comparisons to several other existing methods, demonstrates that AIIE is a more desirable method for searching inhomogeneous spatial patterns of reaction-diffusion equations in a large parameter space 
650 4 |a Journal Article 
700 1 |a Chen, Long  |e verfasserin  |4 aut 
700 1 |a Wang, Ming  |e verfasserin  |4 aut 
700 1 |a Nie, Qing  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational physics  |d 1998  |g 231(2012), 15 vom: 01. Juni, Seite 5062-5077  |w (DE-627)NLM098188844  |x 0021-9991  |7 nnns 
773 1 8 |g volume:231  |g year:2012  |g number:15  |g day:01  |g month:06  |g pages:5062-5077 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 231  |j 2012  |e 15  |b 01  |c 06  |h 5062-5077