Atomistic model of micelle-templated mesoporous silicas : structural, morphological, and adsorption properties

The structural, morphological, and adsorption properties of MCM-41 porous silicas are investigated using a realistic numerical model obtained by means of ab initio calculations [Ugliengo, P.; et al. Adv. Mater.2008, 20, 1]. Simulated X-ray diffraction, small angle neutron scattering, and electronic...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 28(2012), 30 vom: 31. Juli, Seite 11131-41
1. Verfasser: Coasne, Benoit (VerfasserIn)
Weitere Verfasser: Ugliengo, Piero
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article MCM-41 Micelles Silicon Dioxide 7631-86-9
Beschreibung
Zusammenfassung:The structural, morphological, and adsorption properties of MCM-41 porous silicas are investigated using a realistic numerical model obtained by means of ab initio calculations [Ugliengo, P.; et al. Adv. Mater.2008, 20, 1]. Simulated X-ray diffraction, small angle neutron scattering, and electronic microscopy for the atomistic model are in good agreement with experimental data. The morphological features are also assessed from chord length distributions and porous volume and specific geometrical surface calculations, etc. The N(2), CO(2), and H(2)O adsorption isotherms in the atomistic model of MCM-41 are also in reasonable agreement with their experimental counterpart. An important finding of the present work is that water forms a film adsorbed on specific hydrophilic regions of the surface while the rest of the surface is depleted in water molecules. This result suggests that the surface of MCM-41 materials is heterogeneous, as it is made up of both hydrophilic and hydrophobic patches. While adsorption and irreversible capillary condensation can be described using the thermodynamical approach by Derjaguin (also known as the Derjaguin-Broekhoff-De Boer model), the Freundlich equation fits nicely the data for reversible and continuous filling in small pores
Beschreibung:Date Completed 20.12.2012
Date Revised 31.07.2012
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/la3022529