Self-assembly and molecular recognition of adenine- and thymine-functionalized nucleolipids in the mixed monolayers and thymine-functionalized nucleolipids on aqueous melamine at the air-water interface

Self-assembly and molecular recognition of the monolayers composed of an equimolar mixture of adenine- and thymine-functionalized nucleolipids at the air-water interface have been investigated in detail using surface pressure-molecular area isotherms and in situ infrared reflection absorption spectr...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 28(2012), 30 vom: 31. Juli, Seite 11153-63
1. Verfasser: Xin, Yanyan (VerfasserIn)
Weitere Verfasser: Kong, Xianming, Zhang, Xianfeng, Lv, Zhongpeng, Du, Xuezhong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Lipids Triazines Water 059QF0KO0R Adenine JAC85A2161 melamine N3GP2YSD88 mehr... Thymine QR26YLT7LT
Beschreibung
Zusammenfassung:Self-assembly and molecular recognition of the monolayers composed of an equimolar mixture of adenine- and thymine-functionalized nucleolipids at the air-water interface have been investigated in detail using surface pressure-molecular area isotherms and in situ infrared reflection absorption spectroscopy (IRRAS). Prior to molecular recognition, the adenine moieties in the monolayer were almost oriented on an end-on mode through π-stacking and hydrogen bonding interactions, and the C-C-C planes of the alkyl chains were preferentially oriented perpendicular to the water surface, while the thymine moieties in the monolayer were involved in hydrogen bonding almost with a flat-on orientation. On aqueous subphases containing complementary bases, no significant molecular recognition was observed for the monolayers of individual nucleolipids. In the monolayer of equimolar mixture, molecular recognition occurred between the adenine and thymine moieties through hydrogen bonding probably with the development of cyclic structures of adenine-thymine-adenine-thymine quartets. Although molecular recognition between the monolayer of thymine-functionalized nucleolipids and aqueous melamine took place through triple hydrogen bonds, no melamine binding to the monolayer of equimolar mixture was observed, which reflects the formation of the quartets in the mixed monolayers at the air-water interface. FTIR and small-angle X-ray diffraction (XRD) results of the corresponding Langmuir-Blodgett films support the hydrogen bonding recognition and molecular orientation
Beschreibung:Date Completed 20.12.2012
Date Revised 21.11.2013
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/la301338a