Ridge network detection in crumpled paper via graph density maximization

Crumpled sheets of paper tend to exhibit a specific and complex structure, which is described by physicists as ridge networks. Existing literature shows that the automation of ridge network detection in crumpled paper is very challenging because of its complex structure and measuring distortion. In...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 21(2012), 10 vom: 28. Okt., Seite 4498-502
1. Verfasser: Hsu, Chiou-Ting (VerfasserIn)
Weitere Verfasser: Huang, Marvin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Letter Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652 4500
001 NLM219092621
003 DE-627
005 20250214050724.0
007 cr uuu---uuuuu
008 231224s2012 xx |||||o 00| ||eng c
028 5 2 |a pubmed25n0730.xml 
035 |a (DE-627)NLM219092621 
035 |a (NLM)22752132 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Hsu, Chiou-Ting  |e verfasserin  |4 aut 
245 1 0 |a Ridge network detection in crumpled paper via graph density maximization 
264 1 |c 2012 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 11.02.2013 
500 |a Date Revised 21.09.2012 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Crumpled sheets of paper tend to exhibit a specific and complex structure, which is described by physicists as ridge networks. Existing literature shows that the automation of ridge network detection in crumpled paper is very challenging because of its complex structure and measuring distortion. In this paper, we propose to model the ridge network as a weighted graph and formulate the ridge network detection as an optimization problem in terms of the graph density. First, we detect a set of graph nodes and then determine the edge weight between each pair of nodes to construct a complete graph. Next, we define a graph density criterion and formulate the detection problem to determine a subgraph with maximal graph density. Further, we also propose to refine the graph density by including a pairwise connectivity into the criterion to improve the connectivity of the detected ridge network. Our experimental results show that, with the density criterion, our proposed method effectively automates the ridge network detection 
650 4 |a Letter 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Huang, Marvin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 21(2012), 10 vom: 28. Okt., Seite 4498-502  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:21  |g year:2012  |g number:10  |g day:28  |g month:10  |g pages:4498-502 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 21  |j 2012  |e 10  |b 28  |c 10  |h 4498-502