Reidentification by Relative Distance Comparison

Matching people across nonoverlapping camera views at different locations and different times, known as person reidentification, is both a hard and important problem for associating behavior of people observed in a large distributed space over a prolonged period of time. Person reidentification is f...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 35(2013), 3 vom: 15. März, Seite 653-68
1. Verfasser: Zheng, Wei-Shi (VerfasserIn)
Weitere Verfasser: Gong, Shaogang, Xiang, Tao
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM218916477
003 DE-627
005 20231224041636.0
007 cr uuu---uuuuu
008 231224s2013 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2012.138  |2 doi 
028 5 2 |a pubmed24n0729.xml 
035 |a (DE-627)NLM218916477 
035 |a (NLM)22732661 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zheng, Wei-Shi  |e verfasserin  |4 aut 
245 1 0 |a Reidentification by Relative Distance Comparison 
264 1 |c 2013 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 17.05.2016 
500 |a Date Revised 01.03.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Matching people across nonoverlapping camera views at different locations and different times, known as person reidentification, is both a hard and important problem for associating behavior of people observed in a large distributed space over a prolonged period of time. Person reidentification is fundamentally challenging because of the large visual appearance changes caused by variations in view angle, lighting, background clutter, and occlusion. To address these challenges, most previous approaches aim to model and extract distinctive and reliable visual features. However, seeking an optimal and robust similarity measure that quantifies a wide range of features against realistic viewing conditions from a distance is still an open and unsolved problem for person reidentification. In this paper, we formulate person reidentification as a relative distance comparison (RDC) learning problem in order to learn the optimal similarity measure between a pair of person images. This approach avoids treating all features indiscriminately and does not assume the existence of some universally distinctive and reliable features. To that end, a novel relative distance comparison model is introduced. The model is formulated to maximize the likelihood of a pair of true matches having a relatively smaller distance than that of a wrong match pair in a soft discriminant manner. Moreover, in order to maintain the tractability of the model in large scale learning, we further develop an ensemble RDC model. Extensive experiments on three publicly available benchmarking datasets are carried out to demonstrate the clear superiority of the proposed RDC models over related popular person reidentification techniques. The results also show that the new RDC models are more robust against visual appearance changes and less susceptible to model overfitting compared to other related existing models 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Gong, Shaogang  |e verfasserin  |4 aut 
700 1 |a Xiang, Tao  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 35(2013), 3 vom: 15. März, Seite 653-68  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:35  |g year:2013  |g number:3  |g day:15  |g month:03  |g pages:653-68 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2012.138  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 35  |j 2013  |e 3  |b 15  |c 03  |h 653-68