Hierarchical Aligned Cluster Analysis for Temporal Clustering of Human Motion

Temporal segmentation of human motion into plausible motion primitives is central to understanding and building computational models of human motion. Several issues contribute to the challenge of discovering motion primitives: the exponential nature of all possible movement combinations, the variabi...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 35(2013), 3 vom: 15. März, Seite 582-96
1. Verfasser: Zhou, Feng (VerfasserIn)
Weitere Verfasser: De la Torre, Fernando, Hodgins, Jessica K
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000naa a22002652 4500
001 NLM218916469
003 DE-627
005 20231224041636.0
007 cr uuu---uuuuu
008 231224s2013 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2012.137  |2 doi 
028 5 2 |a pubmed24n0729.xml 
035 |a (DE-627)NLM218916469 
035 |a (NLM)22732658 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhou, Feng  |e verfasserin  |4 aut 
245 1 0 |a Hierarchical Aligned Cluster Analysis for Temporal Clustering of Human Motion 
264 1 |c 2013 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 17.05.2016 
500 |a Date Revised 08.04.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Temporal segmentation of human motion into plausible motion primitives is central to understanding and building computational models of human motion. Several issues contribute to the challenge of discovering motion primitives: the exponential nature of all possible movement combinations, the variability in the temporal scale of human actions, and the complexity of representing articulated motion. We pose the problem of learning motion primitives as one of temporal clustering, and derive an unsupervised hierarchical bottom-up framework called hierarchical aligned cluster analysis (HACA). HACA finds a partition of a given multidimensional time series into m disjoint segments such that each segment belongs to one of k clusters. HACA combines kernel k-means with the generalized dynamic time alignment kernel to cluster time series data. Moreover, it provides a natural framework to find a low-dimensional embedding for time series. HACA is efficiently optimized with a coordinate descent strategy and dynamic programming. Experimental results on motion capture and video data demonstrate the effectiveness of HACA for segmenting complex motions and as a visualization tool. We also compare the performance of HACA to state-of-the-art algorithms for temporal clustering on data of a honey bee dance. The HACA code is available online 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a De la Torre, Fernando  |e verfasserin  |4 aut 
700 1 |a Hodgins, Jessica K  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 35(2013), 3 vom: 15. März, Seite 582-96  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:35  |g year:2013  |g number:3  |g day:15  |g month:03  |g pages:582-96 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2012.137  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 35  |j 2013  |e 3  |b 15  |c 03  |h 582-96