Adaptive Markov random fields for joint unmixing and segmentation of hyperspectral images

Linear spectral unmixing is a challenging problem in hyperspectral imaging that consists of decomposing an observed pixel into a linear combination of pure spectra (or endmembers) with their corresponding proportions (or abundances). Endmember extraction algorithms can be employed for recovering the...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 22(2013), 1 vom: 07. Jan., Seite 5-16
1. Verfasser: Eches, Olivier (VerfasserIn)
Weitere Verfasser: Benediktsson, Jón Atli, Dobigeon, Nicolas, Tourneret, Jean-Yves
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM218742770
003 DE-627
005 20231224041223.0
007 cr uuu---uuuuu
008 231224s2013 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2012.2204270  |2 doi 
028 5 2 |a pubmed24n0729.xml 
035 |a (DE-627)NLM218742770 
035 |a (NLM)22711772 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Eches, Olivier  |e verfasserin  |4 aut 
245 1 0 |a Adaptive Markov random fields for joint unmixing and segmentation of hyperspectral images 
264 1 |c 2013 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 03.06.2013 
500 |a Date Revised 27.12.2012 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Linear spectral unmixing is a challenging problem in hyperspectral imaging that consists of decomposing an observed pixel into a linear combination of pure spectra (or endmembers) with their corresponding proportions (or abundances). Endmember extraction algorithms can be employed for recovering the spectral signatures while abundances are estimated using an inversion step. Recent works have shown that exploiting spatial dependencies between image pixels can improve spectral unmixing. Markov random fields (MRF) are classically used to model these spatial correlations and partition the image into multiple classes with homogeneous abundances. This paper proposes to define the MRF sites using similarity regions. These regions are built using a self-complementary area filter that stems from the morphological theory. This kind of filter divides the original image into flat zones where the underlying pixels have the same spectral values. Once the MRF has been clearly established, a hierarchical Bayesian algorithm is proposed to estimate the abundances, the class labels, the noise variance, and the corresponding hyperparameters. A hybrid Gibbs sampler is constructed to generate samples according to the corresponding posterior distribution of the unknown parameters and hyperparameters. Simulations conducted on synthetic and real AVIRIS data demonstrate the good performance of the algorithm 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Benediktsson, Jón Atli  |e verfasserin  |4 aut 
700 1 |a Dobigeon, Nicolas  |e verfasserin  |4 aut 
700 1 |a Tourneret, Jean-Yves  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 22(2013), 1 vom: 07. Jan., Seite 5-16  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:22  |g year:2013  |g number:1  |g day:07  |g month:01  |g pages:5-16 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2012.2204270  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 22  |j 2013  |e 1  |b 07  |c 01  |h 5-16