Direct phase projection and transcranial focusing of ultrasound for brain therapy

Ultrasound can be used to noninvasively treat the human brain with hyperthermia by focusing through the skull. To obtain an accurate focus, especially at high frequencies (>500 kHz), the phase of the transmitted wave must be modified to correct the aberrations introduced by the patient's ind...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control. - 1986. - 59(2012), 6 vom: 28. Juni, Seite 1149-59
1. Verfasser: Pinton, Gianmarco F (VerfasserIn)
Weitere Verfasser: Aubry, Jean-Francois, Tanter, Mickaël
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM218739354
003 DE-627
005 20250214040022.0
007 cr uuu---uuuuu
008 231224s2012 xx |||||o 00| ||eng c
024 7 |a http://dx.doi.org/10.1109/TUFFC.2012.2305  |2 doi 
028 5 2 |a pubmed25n0729.xml 
035 |a (DE-627)NLM218739354 
035 |a (NLM)22711410 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Pinton, Gianmarco F  |e verfasserin  |4 aut 
245 1 0 |a Direct phase projection and transcranial focusing of ultrasound for brain therapy 
264 1 |c 2012 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 15.10.2012 
500 |a Date Revised 18.09.2019 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Ultrasound can be used to noninvasively treat the human brain with hyperthermia by focusing through the skull. To obtain an accurate focus, especially at high frequencies (>500 kHz), the phase of the transmitted wave must be modified to correct the aberrations introduced by the patient's individual skull morphology. Currently, three-dimensional finite-difference time-domain simulations are used to model a point source at the target. The outward-propagating wave crosses the measured representation of the human skull and is recorded at the therapy array transducer locations. The signal is then time reversed and experimentally transmitted back to its origin. These simulations are resource intensive and add a significant delay to treatment planning. Ray propagation is computationally efficient because it neglects diffraction and only describes two propagation parameters: the wave's direction and the phase. We propose a minimal method that is based only on the phase. The phase information is projected from the external skull surface to the array locations. This replaces computationally expensive finite-difference computations with an almost instantaneous direct phase projection calculation. For the five human skull samples considered, the phase distribution outside of the skull is shown to vary by less than λ/20 as it propagates over a 5 cm distance and the validity of phase projection is established over these propagation distances. The phase aberration introduced by the skull is characterized and is shown to have a good correspondence with skull morphology. The shape of this aberration is shown to have little variation with propagation distance. The focusing quality with the proposed phase-projection algorithm is shown to be indistinguishable from the gold-standard full finite-difference simulation. In conclusion, a spherical wave that is aberrated by the skull has a phase propagation that can be accurately described as radial, even after it has been distorted. By combining finite-difference simulations with a phase-projection algorithm, the time required for treatment planning is significantly reduced. The correlation length of the phase is used to validate the algorithm and it can also be used to provide guiding parameters for clinical array transducer design in terms of transducer spacing and phase error 
650 4 |a Journal Article 
700 1 |a Aubry, Jean-Francois  |e verfasserin  |4 aut 
700 1 |a Tanter, Mickaël  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on ultrasonics, ferroelectrics, and frequency control  |d 1986  |g 59(2012), 6 vom: 28. Juni, Seite 1149-59  |w (DE-627)NLM098181017  |x 1525-8955  |7 nnas 
773 1 8 |g volume:59  |g year:2012  |g number:6  |g day:28  |g month:06  |g pages:1149-59 
856 4 0 |u http://dx.doi.org/http://dx.doi.org/10.1109/TUFFC.2012.2305  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_24 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 59  |j 2012  |e 6  |b 28  |c 06  |h 1149-59