Effects of three different PAHs on nitrogen-fixing bacterial diversity in mangrove sediment
Polycyclic aromatic hydrocarbons (PAHs) are of great environmental and human health concerns due to their widespread occurrence, persistence and carcinogenic properties. There is now compelling evidence that the mangrove sediment microbial structure is susceptible to PAHs contamination. The study ai...
Veröffentlicht in: | Ecotoxicology (London, England). - 1992. - 21(2012), 6 vom: 25. Aug., Seite 1651-60 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2012
|
Zugriff auf das übergeordnete Werk: | Ecotoxicology (London, England) |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't DNA, Bacterial Fluorenes Naphthalenes Pyrenes naphthalene 2166IN72UN fluorene 3Q2UY0968A mehr... |
Zusammenfassung: | Polycyclic aromatic hydrocarbons (PAHs) are of great environmental and human health concerns due to their widespread occurrence, persistence and carcinogenic properties. There is now compelling evidence that the mangrove sediment microbial structure is susceptible to PAHs contamination. The study aimed to assess the effects of PAHs on the nitrogen-fixing bacterial community of mangrove sediment. Three types of PAHs, naphthalene (NAP), a two-ring PAH; fluorene (FLU), a three-ring PAH; and pyrene (PYR), a four-ring PAH; were applied at three doses. After 7 and 24 days of incubation, the nitrogen-fixing bacterial population and diversity were evidenced in the nifH gene polymerase chain reaction denaturing gradient gel electrophoresis profile. DGGE pattern shows that the nitrogen-fixing bacterial community changed significantly with the types and doses of PAHs, and the incubation time. As far as single PAH is concerned, high concentration of PAH has larger impact on the nitrogen-fixing bacteria than low concentration of PAH. Besides, among the three types of PAHs, NAP has the greatest short term toxicity; PYR has the strongest long-term impact, whereas FLU has relatively higher long-time effect. Multidimensional scaling analysis and correspondence analysis are two reliable multivariate analysis methods for investigating the relationship between the nitrogen-fixing bacterial community and PAHs contamination. Investigating the effect of PAHs on the nitrogen-fixing bacterial diversity could yield useful information for understanding the process of biogeochemical cycling of nitrogen in mangrove sediment. The present study reveals that nitrogen-fixing bacterial community can be used as an important parameter indicating the impact of PAHs on mangrove sediment ecosystem |
---|---|
Beschreibung: | Date Completed 21.11.2012 Date Revised 21.10.2021 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1573-3017 |
DOI: | 10.1007/s10646-012-0946-8 |